• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequacoes

inequacoes

Mensagempor bmachado » Seg Jul 09, 2012 16:54

Sejam as funcoes reais f e g dadas por f(x)= \sqrt[]{x} e g(x) = \frac{4}{3(x-1)} + \frac{8}{3(x+2)} ; o dominio da funcao compoSta f o G e
Gab. {x \in \Re \prime -2 < x \preceq 0 ou x >1}

tentei resolvendo g(x) e encontrando 2 raízes no Denominador 1 e -2. O numeraDor ficou x= -7/12??
Minha duvida é pq o sinal de \leq ou \geq quando usa-lo?E o q fazer com f(x)= \sqrt[]{x} ???? Obrigado por colaborar com meu aprendizado!

Obrigado caro SantiaGo, mas, continuo com as mesmas duvidas acima.
Editado pela última vez por bmachado em Seg Jul 09, 2012 22:48, em um total de 1 vez.
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: inequacoes

Mensagempor e8group » Seg Jul 09, 2012 18:15

bmachado ,para encontarmos D (f o g) real temos primeiro que descrobrir se (f o g) é uma função "limitada", isto é se há um x para a qual Im (f o g) não é real .

Primeiro cabe a nós analisar a função composta ,pelo enunciado temos :


fog(x)=f(g(x)) = \sqrt{\frac{4}{3(x-1)}+\frac{8}{3(x+2)}}

Basta você observar o Domínio de (f o g) real .

note que ,


\frac{4}{3(x-1)}+\frac{8}{3(x+2)} \geq 0

3(x-1)\neq 0 e

3(x+2) \neq 0 ,desta forma obtera o Domínio real da função composta ,tente concluír ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.