por bmachado » Seg Jul 09, 2012 16:54
Sejam as funcoes reais f e g dadas por
![f(x)= \sqrt[]{x} e g(x) = \frac{4}{3(x-1)} + \frac{8}{3(x+2)} f(x)= \sqrt[]{x} e g(x) = \frac{4}{3(x-1)} + \frac{8}{3(x+2)}](/latexrender/pictures/d1e6d2882965da7dafcc8d11dd64d46b.png)
; o dominio da funcao compoSta f o G e
Gab.

tentei resolvendo g(x) e encontrando 2 raízes no Denominador 1 e -2. O numeraDor ficou x= -7/12??
Minha duvida é pq o sinal de

quando usa-lo?E o q fazer com
![f(x)= \sqrt[]{x} f(x)= \sqrt[]{x}](/latexrender/pictures/5d3223c77f72d3200c71b36455103ba4.png)
???? Obrigado por colaborar com meu aprendizado!
Obrigado caro SantiaGo, mas, continuo com as mesmas duvidas acima.
Editado pela última vez por
bmachado em Seg Jul 09, 2012 22:48, em um total de 1 vez.
-
bmachado
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Fev 29, 2012 00:28
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: EF
- Andamento: formado
por e8group » Seg Jul 09, 2012 18:15
bmachado ,para encontarmos D (f o g) real temos primeiro que descrobrir se (f o g) é uma função "limitada", isto é se há um

para a qual Im (f o g) não é real .
Primeiro cabe a nós analisar a função composta ,pelo enunciado temos :
Basta você observar o Domínio de (f o g) real .
note que ,

e

,desta forma obtera o Domínio real da função composta ,tente concluír ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequações
por Bruno 888 » Qua Set 24, 2008 20:36
- 1 Respostas
- 4216 Exibições
- Última mensagem por admin

Ter Set 30, 2008 17:09
Inequações
-
- Inequações
por Rose » Seg Nov 24, 2008 22:44
- 2 Respostas
- 3697 Exibições
- Última mensagem por Rose

Qua Nov 26, 2008 08:18
Inequações
-
- Inequações
por cristina » Seg Set 07, 2009 01:46
- 2 Respostas
- 2930 Exibições
- Última mensagem por cristina

Seg Set 07, 2009 20:55
Sistemas de Equações
-
- inequações
por jose henrique » Ter Out 26, 2010 23:56
- 10 Respostas
- 6835 Exibições
- Última mensagem por MarceloFantini

Qui Nov 04, 2010 10:31
Sistemas de Equações
-
- Inequações
por brijahh » Sáb Ago 06, 2011 10:38
- 1 Respostas
- 2214 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 06, 2011 17:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.