Diz-se que um número inteiro positivo x é um número perfeito, quando é a soma de todos
os seus divisores positivos, exceto ele próprio. Por exemplo, 28 é um número perfeito, pois
28 = 1 + 2 + 4 + 7 + 14. A última proposição do nono livro dos Elementos de Euclides prova
que se n é um inteiro positivo, tal que 2^n ?1 é um número primo, então 2^(n–1)(2^n ?1) é um número
perfeito. Euler provou que todo número perfeito par tem essa forma, mas ainda não são
conhecidos números perfeitos ímpares.
O menor elemento do conjunto P = {n ? / 2^(n?1)(2^n ?1) > 1128}, para o qual 2n–1(2n?1) é um número
perfeito, é
A) 5 C) 7 E) 9
B) 6 D) 8


, para o qual
é um número perfeito, é
é um número primo, então
também é primo", concluí-se que
.
via algum recurso algébrico ( tentei mas não cheguei a bom termo ), ou testamos alguns números primos posto que 1128 é um número relativamente pequeno e não será difícil encontrar o tal n. ![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.