por replay » Qui Dez 13, 2012 17:05
Fatorando

obtemos:
Eu fiz assim:
Separei em grupos:


Sinto que errei em alguma coisa, não acho a resposta no gabarito:
a)

b)

c)

d)

e)

-
replay
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Dom Fev 19, 2012 23:43
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Qui Dez 13, 2012 21:36
Olá
replay,
boa noite!
Essa fatoração não é tão simples!
A expressão tem 5 termos e você fatorou com apenas 4...
Fiz assim:
![\\ x^2 + 2y^2 + 3xy + x + y = \\\\ x^2 + (y^2 + y^2) + (2xy + xy) + x + y = \\\\ x^2 + y^2 + 2xy + y^2 + xy + x + y = \\\\ (x^2 + 2xy + y^2) + y^2 + xy + x + y = \\\\ (x + y)^2 + y(y + x) + 1(x + y) = \\\\ (x + y)^2 + y(x + y) + 1(x + y) = \\\\ (x + y)\left[ (x + y) + y + 1 \right] = \\\\ (x + y)(x + y + y + 1) = \\\\ \boxed{(x + y)(x + 2y + 1)} \\ x^2 + 2y^2 + 3xy + x + y = \\\\ x^2 + (y^2 + y^2) + (2xy + xy) + x + y = \\\\ x^2 + y^2 + 2xy + y^2 + xy + x + y = \\\\ (x^2 + 2xy + y^2) + y^2 + xy + x + y = \\\\ (x + y)^2 + y(y + x) + 1(x + y) = \\\\ (x + y)^2 + y(x + y) + 1(x + y) = \\\\ (x + y)\left[ (x + y) + y + 1 \right] = \\\\ (x + y)(x + y + y + 1) = \\\\ \boxed{(x + y)(x + 2y + 1)}](/latexrender/pictures/f801877419ada355b9152945284a8758.png)
Comente qualquer dúvida!
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por replay » Qua Dez 19, 2012 16:08
danjr5 escreveu:
Esse trecho:

=

Seria isso ?
Queria saber oque fez nesse trecho, foi uma espécie de fatoração ?
-
replay
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Dom Fev 19, 2012 23:43
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Sex Dez 28, 2012 22:09
Desculpe a demora!
Quanto ao trecho mencionado, é isso mesmo!
Esse tipo de fatoração exige prática no assunto. Continue resolvendo muitos exercícios.
Até.
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- fatoração de Polinômio fatoração de agrupamento
por Estudante13 » Sex Nov 09, 2012 22:52
- 1 Respostas
- 3261 Exibições
- Última mensagem por Cleyson007

Sex Nov 09, 2012 23:06
Álgebra Elementar
-
- Fatoração de agrupamento
por Estudante13 » Sex Nov 09, 2012 23:30
- 4 Respostas
- 3389 Exibições
- Última mensagem por Cleyson007

Sáb Nov 10, 2012 21:09
Polinômios
-
- Agrupamento, centroid e intervalos
por fjucks » Sex Jan 06, 2012 18:58
- 1 Respostas
- 1462 Exibições
- Última mensagem por fjucks

Sáb Jan 07, 2012 14:26
Álgebra Elementar
-
- analise combinatoria, agrupamento
por zenildo » Sáb Ago 31, 2013 00:55
- 1 Respostas
- 1581 Exibições
- Última mensagem por paulo testoni

Sex Out 18, 2013 18:43
Análise Combinatória
-
- analise combinatoria, agrupamento
por zenildo » Sáb Ago 31, 2013 00:58
- 1 Respostas
- 2250 Exibições
- Última mensagem por matano2104

Qui Set 19, 2013 15:24
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.