• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sobre as Fórmulas

Sobre as Fórmulas

Mensagempor Jhenrique » Seg Dez 10, 2012 18:29

Olá,

Sabemos que num triângulo retângulo é verdadeiro que a soma das áreas dos catetos é igual a área da hipotenusa.

Isto é: a^2+b^2=c^2

Agora, adicionando o conceito de unidade a esta fórmula, como ficaria?

Assim?
(a\;u.c.)^2+(b\;u.c.)^2=(c\;u.c.)^2 sendo: u.c.=unidade\;de\;comprimento

Ou assim?
a^2+b^2=c^2

Sendo:
a=\alpha\;u.c.
b=\beta\;u.c.
c=\gamma\;u.c.

\therefore\;\;(\alpha\;u.c.)^2+(\beta\;u.c.)^2=(\gamma\;u.c.)^2

Bem, o que eu busco saber com essa pergunta!? Em 1º lugar, buscar um padrão para as situações semelhantes, é isso o que fazemos em ciencias exatas, buscamos regras gerais e padrões, e em 2º lugar, na álgebra, existe um elemento para representar uma grandeza, um elemento para representar uma unidade e um elemento para representar o coeficiente desta unidade, então, quero fazer um cara-crachá nas fórmulas matemáticas.

Grato!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Sobre as Fórmulas

Mensagempor delara » Sáb Fev 02, 2013 14:48

Creio que há um equívoco na sua afirmação:

Sabemos que num triângulo retângulo é verdadeiro que a soma das áreas dos catetos é igual a área da hipotenusa.


O Teorema de Pitágoras pode relacionar tanto comprimentos como áreas. Portanto o correto seria:

Sabemos que num triângulo retângulo é verdadeiro que a soma dos comprimentos dos quadrados dos catetos é igual ao quadrado do comprimento da hipotenusa.
Ou
Sabemos que num triângulo retângulo é verdadeiro que a soma das áreas dos quadrados cujos lados são catetos é igual a área do quadrado cujo lado é a hipotenusa.

Mas não consegui entender muito bem a sua dúvida, creio que as duas formas representadas estão corretas.

Pois tendo o Teorema de Pitágoras:

a^2 + b^2 = c^2

As unidades de a são em COMPRIMENTO, ou seja, a = 10cm, a = 20dm, a = 10m, a = 12km, etc.
As unidades de \alpha também estão em comprimento, \alpha = 10cm, \alpha = 20dm, \alpha = 10m, \alpha = 12km, etc.

Implicitamente, as duas formas que você apresentou são a mesma coisa.
delara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 31, 2013 09:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas/Engenharia
Andamento: cursando

Re: Sobre as Fórmulas

Mensagempor Russman » Sáb Fev 02, 2013 18:16

Quanto a sua afirmação sobre o teorema de pitágoras o amigo ali de cima está correto. Cuidado com as palavras! Se você se preocupa tanto com formalidades é interessante observar bem as afirmações.

Quanto as unidades eu acredito que você está confundindo a economia de notação com a inexistência de dimensão. Existem grandezas que são adimensionais e não é necessário adotar uma unidade para medi-las, como os ângulos por exemplo. No caso do Teorema nós apenas não escrevemos unidade juntamente na fórmula por uma questão de economia de notação e/ou por estar explicito que os termos a , b e c são grandezas de comprimento. Você decide como expor a unidade da grandeza!

E a = a [L].

Usamos [L] para generalizar as unidades de comprimento.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Sobre as Fórmulas

Mensagempor Jhenrique » Dom Fev 03, 2013 01:04

Eu já obtive a resposta que buscava...

pelo menos a conclusão que cheguei foi esta:

grandeza = coeficiente \times unidade

no teorema de pitágoras ( a^2+b^2=c^2 ) , a , b e c são grandezas.

Ter entendido isso de modo explícito para mim foi importante, no entanto, a cada coisa que eu entendo implica em mais duas coisas novas que ainda não entendo... afff

de qualquer forma... obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.