• Anúncio Global
    Respostas
    Exibições
    Última mensagem

distribuição em quantidades iguais

distribuição em quantidades iguais

Mensagempor antonybel » Ter Abr 24, 2012 09:39

O fundo social de um determinado município quer distribuir 1.276 laranjas, 704 banas, 132 morangos e 748 melancias para crianças carentes. A regra estabelecida é: cada criança deverá receber o mesmo numero de frutas e esse número deve ser o menor possivel para que o máximo de crianças possam ser ajudadas. Sendo assim qual a quantidade de frutas que cada criança receberá?

Fiquei confuso, pois o enunciado não diz se cada criança deverá receber pelo menos uma fruta de cada tipo e nesse caso poderia ser até uma fruta para ca criança. De qualquer forma, a resolução seria atravez d minimo multiplo comum?
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: distribuição em quantidades iguais

Mensagempor DanielFerreira » Ter Abr 24, 2012 21:17

antonybel escreveu:O fundo social de um determinado município quer distribuir 1.276 laranjas, 704 banas, 132 morangos e 748 melancias para crianças carentes. A regra estabelecida é: cada criança deverá receber o mesmo numero de frutas e esse número deve ser o menor possivel para que o máximo de crianças possam ser ajudadas. Sendo assim qual a quantidade de frutas que cada criança receberá?

Fiquei confuso, pois o enunciado não diz se cada criança deverá receber pelo menos uma fruta de cada tipo e nesse caso poderia ser até uma fruta para ca criança. De qualquer forma, a resolução seria atravez d minimo multiplo comum?

Antonybel,
boa noite!
A regra em destaque é clara!
Cada criança recebe o mesmo número de frutas, ou seja: COMUM
... e esse número é o menor possível para que o máximo de crianças possam ser atendidas: (...)

Portanto, Máximo Divisor Comum - MDC:
MDC(1276, 704, 132, 748) = 4 . 11

MDC = 44 frutas
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: distribuição em quantidades iguais

Mensagempor antonybel » Qua Abr 25, 2012 11:52

Valeu, ajudou muito. Um abraço.
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: distribuição em quantidades iguais

Mensagempor DanielFerreira » Qui Abr 26, 2012 20:11

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}