• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação.

Potenciação.

Mensagempor Marcos1978 » Qui Nov 24, 2011 19:16

Por favor, gostaria de saber se eu resolvi de forma correta. Não bateu com a resposta do gabarito, mas como várias outras respostas do gabarito estavam erradas, não sei se é o gabarito que está errado ou sou eu.
[{2}^{9}:({2}^{2}.{2}{)}^{3}{]}^{-3}= [{2}^{9}:({2}^{3}{)}^{3}{]}^{-3}=
[{2}^{9}:{2}^{9}{]}^{-3}= {1}^{-3}=\frac{1}{{1}^{3}}=1
Editado pela última vez por Marcos1978 em Qui Nov 24, 2011 20:43, em um total de 1 vez.
Marcos1978
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Nov 23, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação.

Mensagempor Andreza » Qui Nov 24, 2011 19:50

Quando vc faz 1 elevado a -3 vc usa a regra
a elevado a menos n é igual a um sobre a elevado a n.
todo número elevado a 0 é igual a 1 portanto, 1 elevado a menos 3 é um sobre um elevado a 3 e o resultado de 1 a terceira é 1. Acredito q seja isso.
De uma conferida.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Potenciação.

Mensagempor Andreza » Qui Nov 24, 2011 20:10

http://pt.wikipedia.org/wiki/Exponencia%C3%A7%C3%A3o

De uma olhada neste link q potência é um assunto complexo demais . Até eu fiquei na dúvida e fui pesquisar.

Potências de 1As potências de 1 são as potências de base 1, dados por 1n, sendo n pertencente aos reais. Não importa o valor de "n", 1n será sempre 1. Não se pode afirmar que 0 elevado a 0 é igual a 1.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Potenciação.

Mensagempor Marcos1978 » Qui Nov 24, 2011 20:51

Andreza escreveu:http://pt.wikipedia.org/wiki/Exponencia%C3%A7%C3%A3o

De uma olhada neste link q potência é um assunto complexo demais . Até eu fiquei na dúvida e fui pesquisar.

Potências de 1As potências de 1 são as potências de base 1, dados por 1n, sendo n pertencente aos reais. Não importa o valor de "n", 1n será sempre 1. Não se pode afirmar que 0 elevado a 0 é igual a 1.

Acho que a minha resposta estava errada. Eu editei a questão e coloquei a resposta certa. Certa se o restante da questão estiver resolvido corretamente
Editado pela última vez por Marcos1978 em Qui Nov 24, 2011 22:38, em um total de 1 vez.
Marcos1978
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Nov 23, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação.

Mensagempor MarceloFantini » Qui Nov 24, 2011 21:51

Está certo, dá 1 pelo o que você fez, que acredito que seja isso: \left[ \frac{2^9}{(2^2 \cdot 2)^3} \right]^{-3}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.