Estou com problemas para visualizar a solução desta questão.
Questão:
O valor de Z:
(Não consigui usar o LATEX para a divisão)Bom, eu, inicialmente, resolvi a divisão do
por
, mutiplicando pela conjugado do denominador. Deu a seguinte resposta:
. Tudo bem até aí. Entretanto, quando fui passar para a potência, pensando em usar Moivre, percebi que o ângulo não era notável e, para piorar, o expoente era muito alto. Eu pensei em decompor o expoente, mas, mesmo assim, eu não sei como encontrar o valor do argumento através do Seno e do Cosseno. Alguém me dá uma orientação na questão?

sendo que no caso
é o angulo da forma trigonométrica e r é o modulo.

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)