por jemourafer » Sáb Abr 28, 2012 00:18
Estava fazendo uma lista de cálculo I-A e me deparei com essas duas questões parecidas, porém intrigantes. Os enunciados das questões são o seguinte:
1) Seja

, se x<1; e
![f(x)=\frac{1}{\sqrt[]{x}} f(x)=\frac{1}{\sqrt[]{x}}](/latexrender/pictures/7bf247bc7b411982b7b188fef14e9a7b.png)
, se x

1; a)f é diferenciável em x=1? b)f é contínua em x=1?
Resposta do gabarito: f é diferenciável em x=1 pois f'(1)=-1/2; f é contínua em x=1, pois tem um teorema que garante que toda função diferenciável num ponto é contínua nesse ponto.
2)Seja

, se x<1; e
![f(x)=\frac{1}{\sqrt[]{x}} f(x)=\frac{1}{\sqrt[]{x}}](/latexrender/pictures/7bf247bc7b411982b7b188fef14e9a7b.png)
, se x

1; a)f é diferenciável em x=1? b)f é contínua em x=1?
Resposta do gabarito:f não é contínua em x=1, pois

; f não é diferenciável em x=1 pois se fosse, f seria contínua em x=1.
Minha resolução: Na 1ª questão resolvi dessa forma: A função f é diferenciável em x=1 somente se

existir.

=

:.
![\lim_{x->1+}\frac{\frac{1}{\sqrt[]{x}}-\frac{1}{\sqrt[]{1}}}{x-1}=-\frac{1}{2} \lim_{x->1+}\frac{\frac{1}{\sqrt[]{x}}-\frac{1}{\sqrt[]{1}}}{x-1}=-\frac{1}{2}](/latexrender/pictures/604fef5bfae41462756f094dd03883e6.png)
. Como

, concluímos que o limite bilateral existe e então podemos dizer que f(x) é derivável em x=1. A função também é contínua em x=1, pois é derivável nesse ponto. Essa minha resposta está de acordo com o gabarito!
Já a 2ª questão, tentei fazer da mesma forma e deu que

(que está de acordo com o gabarito), mas quando

deveria valer -1/2 como na questão anterior, no gabarito diz que vale 1. No que eu errei?
-
jemourafer
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 01, 2012 20:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por MarceloFantini » Dom Abr 29, 2012 15:28
Note que para

temos que

, enquanto que para

temos

. Calculando os limites laterais, vemos

e

. Como coincidem, o limite existe e a função é diferenciável no ponto, portanto contínua.
Seu entendimento está incorreto. A função pode ser contínua sem ser diferenciável, como no caso

na origem, ou de forma mais extrema procure sobre a
função de Weierstrass.
Agora, o teorema afirma que
se uma função é diferenciável num ponto, então ela é contínua neste ponto. A
contrapositiva desta afirmação nos diz que
se uma função não é contínua num ponto, então ela não é diferenciável neste ponto.
Ou seja, quando queremos testar se uma função é diferenciável, podemos primeiro verificar se ela é contínua. Se for, então
talvez ela seja diferenciável, porém se não for então
com certeza não é diferenciável. Na primeira questão caso tivesse testado a continuidade veria que existia a possibilidade de ser diferenciável.
Na segunda questão temos

enquanto que

. Como os limites terais são distintos, então a função não é contínua neste ponto, e pelo teorema não é diferenciável.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jemourafer » Dom Abr 29, 2012 21:49
-
jemourafer
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 01, 2012 20:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por MarceloFantini » Seg Abr 30, 2012 18:59
Você fez as contas da derivada pela definição de limite ao invés de calcular o limite da função. É aí o seu erro.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jemourafer » Qui Mai 03, 2012 20:34
Muuito obrigada. Agora sim entendi!

-
jemourafer
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 01, 2012 20:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Continuidade
por AlbertoAM » Seg Abr 04, 2011 20:59
- 8 Respostas
- 5399 Exibições
- Última mensagem por LuizAquino

Qua Abr 06, 2011 10:33
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por guilherme5088 » Sáb Out 12, 2019 15:31
- 1 Respostas
- 5220 Exibições
- Última mensagem por adauto martins

Ter Out 15, 2019 23:11
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por MCordeiro » Qui Jul 16, 2020 19:11
- 1 Respostas
- 3380 Exibições
- Última mensagem por adauto martins

Qua Out 14, 2020 12:00
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de Continuidade
por PeIdInHu » Qua Jul 14, 2010 21:04
- 2 Respostas
- 2942 Exibições
- Última mensagem por PeIdInHu

Qui Jul 15, 2010 01:03
Cálculo: Limites, Derivadas e Integrais
-
- Limite Continuidade
por Claudin » Sáb Out 01, 2011 11:33
- 10 Respostas
- 5462 Exibições
- Última mensagem por Claudin

Seg Out 03, 2011 10:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.