• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferenciabilidade x continuidade.

Diferenciabilidade x continuidade.

Mensagempor jemourafer » Sáb Abr 28, 2012 00:18

Estava fazendo uma lista de cálculo I-A e me deparei com essas duas questões parecidas, porém intrigantes. Os enunciados das questões são o seguinte:

1) Seja f(x)=\frac{3-x}{2}, se x<1; e f(x)=\frac{1}{\sqrt[]{x}}, se x\geq1; a)f é diferenciável em x=1? b)f é contínua em x=1?
Resposta do gabarito: f é diferenciável em x=1 pois f'(1)=-1/2; f é contínua em x=1, pois tem um teorema que garante que toda função diferenciável num ponto é contínua nesse ponto.

2)Seja f(x)=-\frac{x}{2}, se x<1; e f(x)=\frac{1}{\sqrt[]{x}}, se x\geq1; a)f é diferenciável em x=1? b)f é contínua em x=1?
Resposta do gabarito:f não é contínua em x=1, pois \lim_{x->1-}f(x)=-1/2\neq\lim_{x->1+}f(x)=1; f não é diferenciável em x=1 pois se fosse, f seria contínua em x=1.

Minha resolução: Na 1ª questão resolvi dessa forma: A função f é diferenciável em x=1 somente se \lim_{x->1} f(x) existir.

\lim_{x->p} \frac{f(x)-f(p)}{x-p}=

\lim_{x->1-} \frac{\frac{3-x}{2}-\frac{3-1}{2}}{x-1}=-\frac{1}{2} :. \lim_{x->1+}\frac{\frac{1}{\sqrt[]{x}}-\frac{1}{\sqrt[]{1}}}{x-1}=-\frac{1}{2}. Como \lim_{x->1-}f(x)=-\frac{1}{2}=\lim_{x->1+} f(x), concluímos que o limite bilateral existe e então podemos dizer que f(x) é derivável em x=1. A função também é contínua em x=1, pois é derivável nesse ponto. Essa minha resposta está de acordo com o gabarito!
Já a 2ª questão, tentei fazer da mesma forma e deu que \lim_{x->1-}f(x)=-\frac{1}{2} (que está de acordo com o gabarito), mas quando \lim_{x->1+}f(x) deveria valer -1/2 como na questão anterior, no gabarito diz que vale 1. No que eu errei?
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Diferenciabilidade x continuidade.

Mensagempor MarceloFantini » Dom Abr 29, 2012 15:28

Note que para x<1 temos que f'(x) = \frac{-1}{2}, enquanto que para x \geq 1 temos f'(x) = - \frac{1}{2 \sqrt{x^3}}. Calculando os limites laterais, vemos \lim_{x \to 1^+} f'(x) = \frac{-1}{2} e \lim_{x \to 1^-} f'(x) = \frac{-1}{2}. Como coincidem, o limite existe e a função é diferenciável no ponto, portanto contínua.

Seu entendimento está incorreto. A função pode ser contínua sem ser diferenciável, como no caso f(t) = t \cos \left( \frac{1}{t} \right) na origem, ou de forma mais extrema procure sobre a função de Weierstrass.

Agora, o teorema afirma que se uma função é diferenciável num ponto, então ela é contínua neste ponto. A contrapositiva desta afirmação nos diz que se uma função não é contínua num ponto, então ela não é diferenciável neste ponto.

Ou seja, quando queremos testar se uma função é diferenciável, podemos primeiro verificar se ela é contínua. Se for, então talvez ela seja diferenciável, porém se não for então com certeza não é diferenciável. Na primeira questão caso tivesse testado a continuidade veria que existia a possibilidade de ser diferenciável.

Na segunda questão temos \lim_{x \to 1^-} f(x) = \frac{-1}{2} enquanto que \lim_{x \to 1^+} f(x) = 1. Como os limites terais são distintos, então a função não é contínua neste ponto, e pelo teorema não é diferenciável.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Diferenciabilidade x continuidade.

Mensagempor jemourafer » Dom Abr 29, 2012 21:49

Sim, compreendi que a função não é contínua, pois os limites laterais são diferentes. Logo, pelo teorema, também não é diferenciável. Mas o ponto em que eu tenho dúvida é na conta dos limites em si. Pois nas contas que fiz, os limites laterais da questão 2 dão o mesmo resultado (que nem na questão 1). Assim:
\lim_{x->p}\frac{f(x)-f(p)}{x-p}


\lim_{x->1-}\frac{(-\frac{x}{2})-(-\frac{1}{2})}{x-1}= \lim_{x->1-}\frac{\frac{1-x}{2}}{x-1}= \lim_{x->1-}\frac{1-x}{2(x-1)}= -\frac{1}{2}


\lim_{x->1+}\frac{\frac{1}{\sqrt[]{x}}-\frac{1}{\sqrt[]{1}}}{x-1}= \lim_{x->1+}\frac{\frac{1-\sqrt[]{x}}{\sqrt[]{x}}}{x-1}= \lim_{x->1+}\frac{1-\sqrt[]{x}}{\sqrt[]{x}(x-1)}= \lim_{x->1+}\frac{1-\sqrt[]{x}}{\sqrt[]{x}(x-1)}\frac{(1+\sqrt[]{x})}{(1+\sqrt[]{x})}=

\lim_{x->1+}\frac{1+\sqrt[]{x}-\sqrt[]{x}-x}{\sqrt[]{x}(x-1)(1+\sqrt[]{x})}= \lim_{x->1+}\frac{1-x}{\sqrt[]{x}(x-1)(1+\sqrt[]{x})}= \lim_{x->1+}-\frac{1}{(\sqrt[]{x})(1+\sqrt[]{x})}= -\frac{1}{2}.

A resposta correta é \lim_{x->1-}=-\frac{1}{2} e \lim_{x->1+}=1. E como você pode ver nas minhas contas, meus limites laterais deram o mesmo resultado (\lim_{x->1+}= - \frac{1}{2} = \lim_{x->1-})
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Diferenciabilidade x continuidade.

Mensagempor MarceloFantini » Seg Abr 30, 2012 18:59

Você fez as contas da derivada pela definição de limite ao invés de calcular o limite da função. É aí o seu erro.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Diferenciabilidade x continuidade.

Mensagempor jemourafer » Qui Mai 03, 2012 20:34

Muuito obrigada. Agora sim entendi! :)
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?