• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade

Probabilidade

Mensagempor marquessbr » Qua Abr 04, 2012 06:46

tenho uma moeda com 0,6 de probabilidade de dar cara, 0,4 de dar coroa, logicamente. se eu jogar essa mesma moeda duas vezes, qual é a probabilidade de nunca dar cara? alguem pode me ajudar com esse problema?
marquessbr
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 04, 2012 06:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Robotica
Andamento: cursando

Re: Probabilidade

Mensagempor NMiguel » Qua Abr 04, 2012 07:34

Sabemos que os dois lançamentos são independentes, isto é, o resultado do primeiro lançamento não influencia o segundo. Assim, se queremos a probabilidade nunca sair cara, basta multiplicarmos a probabilidade de não sair cara no primeiro lançamento pela probabilidade de não sair cara no segundo lançamento, isto é, 0,4*0,4 = 0,16
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Probabilidade

Mensagempor marquessbr » Qua Abr 04, 2012 10:04

NMiguel escreveu:Sabemos que os dois lançamentos são independentes, isto é, o resultado do primeiro lançamento não influencia o segundo. Assim, se queremos a probabilidade nunca sair cara, basta multiplicarmos a probabilidade de não sair cara no primeiro lançamento pela probabilidade de não sair cara no segundo lançamento, isto é, 0,4*0,4 = 0,16

:y: :-D

obrigado meu brother,
dai, como a probabilidade de 0,6 dando cara implica em uma moeda "hakeada", se acrescentarmos uma moeda honesta
(probabilidade de dar cara = 0,5), ficamos com duas moedas - uma hakeada e outra boa, pois bem, se selecionamos uma moeda
aleatóriamente isso nos daria a mesma probabilidade de 0,5, porque temos duas moedas, dai se lançarmos uma duas vezes e nas duas vezes dá cara.
Qual seria a probabilidade de termos pegado a moeda "hakeada"?

cara, é que to fazendo um curso on line que é muito rápido, eu ate q tenho vontade para estudar sim, mas cairam tres questoes sobre probabilidade, a primeira eu sabia, que era: 'se temos uma moeda com 0,6 de chance de dar cara, qual seria a chance de dar coroa" essa eu acertei que é obvia, 0,4, mas as outras duas seguintes que uma é essa q vc me ajudou e a outra, essa que to postando complicou e pra complicar mais, o curso é em ingles...
obrigado
marquessbr
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 04, 2012 06:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Robotica
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.