por marquessbr » Qua Abr 04, 2012 06:46
tenho uma moeda com 0,6 de probabilidade de dar cara, 0,4 de dar coroa, logicamente. se eu jogar essa mesma moeda duas vezes, qual é a probabilidade de nunca dar cara? alguem pode me ajudar com esse problema?
-
marquessbr
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Abr 04, 2012 06:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Robotica
- Andamento: cursando
por NMiguel » Qua Abr 04, 2012 07:34
Sabemos que os dois lançamentos são independentes, isto é, o resultado do primeiro lançamento não influencia o segundo. Assim, se queremos a probabilidade nunca sair cara, basta multiplicarmos a probabilidade de não sair cara no primeiro lançamento pela probabilidade de não sair cara no segundo lançamento, isto é,

-
NMiguel
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Ter Abr 19, 2011 17:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
-
por marquessbr » Qua Abr 04, 2012 10:04
NMiguel escreveu:Sabemos que os dois lançamentos são independentes, isto é, o resultado do primeiro lançamento não influencia o segundo. Assim, se queremos a probabilidade nunca sair cara, basta multiplicarmos a probabilidade de não sair cara no primeiro lançamento pela probabilidade de não sair cara no segundo lançamento, isto é,

obrigado meu brother,
dai, como a probabilidade de 0,6 dando cara implica em uma moeda "hakeada", se acrescentarmos uma moeda honesta
(probabilidade de dar cara = 0,5), ficamos com duas moedas - uma hakeada e outra boa, pois bem, se selecionamos uma moeda
aleatóriamente isso nos daria a mesma probabilidade de 0,5, porque temos duas moedas, dai se lançarmos uma duas vezes e nas duas vezes dá cara.
Qual seria a probabilidade de termos pegado a moeda "hakeada"?
cara, é que to fazendo um curso on line que é muito rápido, eu ate q tenho vontade para estudar sim, mas cairam tres questoes sobre probabilidade, a primeira eu sabia, que era: 'se temos uma moeda com 0,6 de chance de dar cara, qual seria a chance de dar coroa" essa eu acertei que é obvia, 0,4, mas as outras duas seguintes que uma é essa q vc me ajudou e a outra, essa que to postando complicou e pra complicar mais, o curso é em ingles...
obrigado
-
marquessbr
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Abr 04, 2012 06:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Robotica
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10149 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 20383 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5170 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4405 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4415 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.