• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dependência Linear] Exercício do Boulos

[Dependência Linear] Exercício do Boulos

Mensagempor Vinicius Rodrigues » Dom Abr 01, 2012 01:52

Suponha que (\vec{u}, \vec{v}, \vec{w}) seja LI. Dado \vec{t}, existem \alpha, \beta e \gamma tais que \vec{t}=\alpha\vec{u}+\beta\vec{v}+\gamma\vec{w}.
Prove:

Tentei a ida primeiro.

Certo, creio que o caminho seja avaliar as soluções de
x(\vec{u})+\vec{t})+y(\vec{v})+\vec{t})+\z(\vec{w})+\vec{t})=\vec(0)

Substituindo \vec{t}=\alpha\vec{u}+\beta\vec{v}+\gamma\vec{w} e desenvolvendo, colocando u, v e w em evidência, chego em:
x(a+1)+ya+za=0
y(b+1)+yb+zb=0
z(c+1)+yc+zc=0
Empaco aí. não consigo chegar em um meio de mostrar que a soma de a, b e c deve ser diferente de -1.
Alguma sugestão?
Editado pela última vez por Vinicius Rodrigues em Dom Abr 01, 2012 03:42, em um total de 1 vez.
Vinicius Rodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 01, 2012 01:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Dependência Linear] Exercício do Boulos

Mensagempor MarceloFantini » Dom Abr 01, 2012 03:32

Vinícius, por favor leia as regras do fórum, em especial a primeira.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Dependência Linear] Exercício do Boulos

Mensagempor Vinicius Rodrigues » Dom Abr 01, 2012 03:43

Desculpe-me. Editei. Amanhã coloco mais detalhes, agora estou caindo de sono. Obrigado ^^.
Vinicius Rodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 01, 2012 01:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.