• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[metodo das diferenças finitas] URGENTE

[metodo das diferenças finitas] URGENTE

Mensagempor ababa » Seg Dez 05, 2011 21:48

Quem pode resolver e explicar, minimamente, por favor?

Segundo a equação de dispersão:
dC/dt = D(d²C/dx²) - (U*dC/dx)

Sendo
C(x;0) = 0, para x>0, condição inicial
C(0;t) = 5, para t>0, Condição de Contorno 1
C(inf;t) = 0, para t>0, Condição de Contorno 2

Calcular a propagação transiente C(x;t) em um meio homogeneo, isotropico, com dispersão D=1m²/dia e velocidade U=0,2m/dia. O meio possui comprimento 150m, deve ser dividido em no minimo 10 partes iguais e o tempo variando de 0 a 200 dias.

Go go go go
ababa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Dez 05, 2011 21:36
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.