• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria] Ângulos.

[Geometria] Ângulos.

Mensagempor Lucas Ponte » Qui Nov 03, 2011 15:56

Não sei se ta na área certa, não sei se to postando nem no fórum certo. '-'
PS: Sou aluno, não achei nada aqui em relação à aluno e não encontrei outro site qual aparenta ter membros experientes..
Enfim.. Estou com um ângulo aqui que não consigo identificado o valor de "alfa", o qual meu professor
ainda não explicou e provavelmente irá passar de novo uma questão do tipo, já que ninguém conseguiu resolver

Já tentei diversas coisas, como multiplicar em X, somar lado com lado e saber resultado de x ou y..
não me restam mais alternativas para resolver isso, só se eu inventar uma. -rs

A questão seria, qual o valor que alfa assume na representação?
Imagem
Se bugar: http://i.imgur.com/VCLEB.jpg


Alguém pode ajudar? Agradeço.
Lucas Ponte
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 03, 2011 15:39
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Geometria?
Andamento: cursando

Re: [Geometria] Ângulos.

Mensagempor LuizAquino » Dom Nov 06, 2011 18:57

Lucas Ponte escreveu:Qual o valor que alfa assume na representação?
VCLEB.jpg
VCLEB.jpg (10.5 KiB) Exibido 1034 vezes



Os ângulos x + y e 4x - 2y são suplementares. Sendo assim, note que:

(x + y) + (4x - 2y) = 180°

Já os ângulos x + y e 2x - y são opostos pelo vértice. Sendo assim, note que:

x + y = 2x - y

Com essas duas equações, você pode montar o sistema:

\begin{cases}
(x + y) + (4x - 2y) = 180^\circ \\
x + y  = 2x - y
\end{cases}

Resolvendo esse sistema, você obtém x = 40° e y = 20°.

Agora note que os ângulos \alpha e 4x - 2y são opostos pelo vértice. Sendo assim, temos que:

\alpha = 4x - 2y = 4\cdot 40^\circ - 2\cdot 20^\circ = 120^\circ .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: