por Lucas Ponte » Qui Nov 03, 2011 15:56
Não sei se ta na área certa, não sei se to postando nem no fórum certo. '-'
PS: Sou aluno, não achei nada aqui em relação à aluno e não encontrei outro site qual aparenta ter membros experientes..
Enfim.. Estou com um ângulo aqui que não consigo identificado o valor de "alfa", o qual meu professor
ainda não explicou e provavelmente irá passar de novo uma questão do tipo, já que ninguém conseguiu resolver
Já tentei diversas coisas, como multiplicar em X, somar lado com lado e saber resultado de x ou y..
não me restam mais alternativas para resolver isso, só se eu inventar uma. -rs
A questão seria, qual o valor que alfa assume na representação?

Se bugar:
http://i.imgur.com/VCLEB.jpgAlguém pode ajudar? Agradeço.
-
Lucas Ponte
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Nov 03, 2011 15:39
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Geometria?
- Andamento: cursando
por LuizAquino » Dom Nov 06, 2011 18:57
Lucas Ponte escreveu:Qual o valor que alfa assume na representação?

- VCLEB.jpg (10.5 KiB) Exibido 1108 vezes
Os ângulos x + y e 4x - 2y são suplementares. Sendo assim, note que:
(x + y) + (4x - 2y) = 180°
Já os ângulos x + y e 2x - y são opostos pelo vértice. Sendo assim, note que:
x + y = 2x - y
Com essas duas equações, você pode montar o sistema:

Resolvendo esse sistema, você obtém x = 40° e y = 20°.
Agora note que os ângulos

e 4x - 2y são opostos pelo vértice. Sendo assim, temos que:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana (soma dos 4 angulos)
por Rafael Pitzer » Seg Fev 11, 2013 18:54
- 4 Respostas
- 2062 Exibições
- Última mensagem por DanielFerreira

Ter Fev 12, 2013 17:02
Geometria Plana
-
- [Questão geometria plana relacionada aos ângulos notáveis]
por Anniemf » Qua Mar 28, 2012 14:33
- 1 Respostas
- 3563 Exibições
- Última mensagem por kelvinJhonson

Sáb Abr 21, 2012 23:20
Geometria Plana
-
- Ângulos
por admin » Sex Set 07, 2007 06:42
- 3 Respostas
- 13569 Exibições
- Última mensagem por Numwantida

Qui Mai 24, 2018 05:06
Pérolas
-
- Angulos ??????
por ByRobert » Qui Set 01, 2011 12:59
- 6 Respostas
- 9047 Exibições
- Última mensagem por LuizAquino

Qui Set 01, 2011 21:24
Trigonometria
-
- ângulos
por Thays » Sáb Jan 14, 2012 11:59
- 6 Respostas
- 4628 Exibições
- Última mensagem por Thays

Qui Jan 19, 2012 09:36
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.