• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo-Limite

Cálculo-Limite

Mensagempor curioso » Ter Mar 03, 2009 15:23

Alguém poderia me ajudar,não consigo chegar no resultado nessa questão.
vou chamar de infinito a letra i.
a)lim x(raiz(x²-1)-x)
x->+i
to começando a estudar limites,como faço nesse caso. Tem que dividir o numerador pela potência maior?
tipo assim: lim x(raiz(x²-1)-x)= lim x(raiz(x²-1)-x)
lim x->i lim x->i x² x² x² x²
mas depois não chego no resultado depois de dividir e aplicar a teoria.O que falta?
curioso
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 03, 2009 15:15
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia/Sistemas de Informação
Andamento: cursando

Re: Cálculo-Limite

Mensagempor Molina » Ter Mar 03, 2009 21:37

Boa noite, curioso.

Primeiramente vou editar seu limite usando o LaTeX.
Nos próximos exercícios tente usar também, fica mais fácil para o entendimento.

Bom, pelo o que eu entendi é isso:
\lim_{x\rightarrow\infty} x(\sqrt[]{{x}^{2}-1}-x)

Correto?

Normalmente quando aparece raiz nos limites, tem-se que multiplicar em em cima e embaixo pelo conjugado.

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}