• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me Ajudam...Álgebra Linear

Me Ajudam...Álgebra Linear

Mensagempor jane_oliveira » Seg Jul 04, 2011 10:21

Alguém pode me ajudar, pois já resolvi, porém não tenho certeza da resposta e preciso postar urgentemente a resposta.

Sabe-se que uma alimentação diária equilibrada em vitaminas deve constar de 170 unidades de vitamina A, 180 unidades de vitamina B, 140 unidades de vitamina C, 180 unidades de vitamina D e 350 unidades de vitamina E.
Com o objetivo de descobrir como deverá ser uma refeição equilibrada, foram estudados cinco elementos. Fixada uma mesma quantidade (1g) de cada elemento, determinou-se que:
i) O alimento I tem 1 unidade de vitamina A, 10 unidades de vitamina B, 1 unidade
de vitamina C, 2 unidades de vitamina D e 2 unidades de vitamina E.
ii) O alimento II tem 9 unidades de vitamina A, 1 unidade de vitamina B, 0 unidades
de vitamina C, 1 unidade de vitamina D e 1 unidade de vitamina E.
iii) O alimento III tem 2 unidades de vitamina A, 2 unidades de vitamina B, 5 unidades
de vitamina C, 1 unidade de vitamina D e 2 unidades de vitamina E.
iv) O alimento IV tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade
de vitamina C, 2 unidades de vitamina D e 13 unidades de vitamina E.
v) O alimento V tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade
de vitamina C, 9 unidades de vitamina D e 2 unidades de vitamina E.

Se desejarmos obter uma alimentação equilibrada:
a) Encontre o sistema linear que descreve o problema.
b) Discuta o tipo de solução do sistema linear obtido.
c) Quantas gramas de cada um dos alimentos I, II, III e IV devemos ser ingerir diariamente?
d) O sistema linear obtido pode ser resolvido pela Regra de Cramer? Justifique.
e) Para a resolução de sistemas lineares em geral, faça uma comparação entre os métodos de Cramer e de Eliminação de Gauss. Aponte as vantagens e desvantagens de cada um desses métodos.
jane_oliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jul 04, 2011 10:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia de produção
Andamento: cursando

Re: Me Ajudam...Álgebra Linear

Mensagempor Neperiano » Seg Jul 04, 2011 19:28

Ola

Primeiramente você monta as equações

I = 1a + 10b + 1C + 2D + 2E

Faça assim para todas

Dai para balancear, eu pegaria um pouco de cada e tentaria formar elas, ou então subsituiria nos valores de a,b,c,d, e na 1 pegaria a 2 até dar.

Tambem daria pra resolver por matrizes.

Não sei exatamente como fez, mas tenque seguir a lógica de montar equações

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.