• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me Ajudam...Álgebra Linear

Me Ajudam...Álgebra Linear

Mensagempor jane_oliveira » Seg Jul 04, 2011 10:21

Alguém pode me ajudar, pois já resolvi, porém não tenho certeza da resposta e preciso postar urgentemente a resposta.

Sabe-se que uma alimentação diária equilibrada em vitaminas deve constar de 170 unidades de vitamina A, 180 unidades de vitamina B, 140 unidades de vitamina C, 180 unidades de vitamina D e 350 unidades de vitamina E.
Com o objetivo de descobrir como deverá ser uma refeição equilibrada, foram estudados cinco elementos. Fixada uma mesma quantidade (1g) de cada elemento, determinou-se que:
i) O alimento I tem 1 unidade de vitamina A, 10 unidades de vitamina B, 1 unidade
de vitamina C, 2 unidades de vitamina D e 2 unidades de vitamina E.
ii) O alimento II tem 9 unidades de vitamina A, 1 unidade de vitamina B, 0 unidades
de vitamina C, 1 unidade de vitamina D e 1 unidade de vitamina E.
iii) O alimento III tem 2 unidades de vitamina A, 2 unidades de vitamina B, 5 unidades
de vitamina C, 1 unidade de vitamina D e 2 unidades de vitamina E.
iv) O alimento IV tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade
de vitamina C, 2 unidades de vitamina D e 13 unidades de vitamina E.
v) O alimento V tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade
de vitamina C, 9 unidades de vitamina D e 2 unidades de vitamina E.

Se desejarmos obter uma alimentação equilibrada:
a) Encontre o sistema linear que descreve o problema.
b) Discuta o tipo de solução do sistema linear obtido.
c) Quantas gramas de cada um dos alimentos I, II, III e IV devemos ser ingerir diariamente?
d) O sistema linear obtido pode ser resolvido pela Regra de Cramer? Justifique.
e) Para a resolução de sistemas lineares em geral, faça uma comparação entre os métodos de Cramer e de Eliminação de Gauss. Aponte as vantagens e desvantagens de cada um desses métodos.
jane_oliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jul 04, 2011 10:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia de produção
Andamento: cursando

Re: Me Ajudam...Álgebra Linear

Mensagempor Neperiano » Seg Jul 04, 2011 19:28

Ola

Primeiramente você monta as equações

I = 1a + 10b + 1C + 2D + 2E

Faça assim para todas

Dai para balancear, eu pegaria um pouco de cada e tentaria formar elas, ou então subsituiria nos valores de a,b,c,d, e na 1 pegaria a 2 até dar.

Tambem daria pra resolver por matrizes.

Não sei exatamente como fez, mas tenque seguir a lógica de montar equações

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.