por CooLer » Qui Jun 02, 2011 13:31
Ache o maior domínio de
![f(x)= \frac{1}{\sqrt[]{{x}^{2}-2x-15}} f(x)= \frac{1}{\sqrt[]{{x}^{2}-2x-15}}](/latexrender/pictures/e58ac776054fbed87d33366a8341050c.png)
consegui um resultado, mas não estou muito certo, alguém ajuda?
-
CooLer
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jun 02, 2011 13:11
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Fabricio dalla » Qui Jun 02, 2011 14:28
imponha a condiçao de existencia do denominador junto com a condiçao de existencia do indice par da raiz
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Fabio Cabral » Qui Jun 02, 2011 14:40
Leve em conta que em uma divisão, o denominador não pode ser zero. E ainda, lembre que, nessas condições,a raíz não pode ser negativa.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida sobre domínio de uma função
por souzalucasr » Seg Abr 14, 2014 17:39
- 1 Respostas
- 1007 Exibições
- Última mensagem por e8group

Seg Abr 14, 2014 18:21
Funções
-
- [descobrir valor para domínio] Domínio da função
por Zebra-LNX » Sáb Jun 16, 2012 12:26
- 1 Respostas
- 3127 Exibições
- Última mensagem por MarceloFantini

Ter Jun 19, 2012 22:18
Funções
-
- [Domínio] Determinar domínio a partir da função
por +danile10 » Qui Fev 07, 2013 21:33
- 1 Respostas
- 2765 Exibições
- Última mensagem por e8group

Qui Fev 07, 2013 22:38
Funções
-
- [Dominio] Cálculo 2- Domínio
por Saturnino Nataniel » Seg Fev 25, 2013 14:09
- 2 Respostas
- 1618 Exibições
- Última mensagem por timoteo

Ter Abr 09, 2013 12:00
Cálculo: Limites, Derivadas e Integrais
-
- Domínio x² -4/x - 1
por virginia » Qui Abr 25, 2013 11:21
- 4 Respostas
- 3078 Exibições
- Última mensagem por virginia

Sáb Abr 27, 2013 01:17
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.