• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida na Resolução de uma Função

Dúvida na Resolução de uma Função

Mensagempor brunnomaia » Dom Mar 06, 2011 11:07

Pessoal sou novo no fórum e este é meu primeiro tópico, desculpe se o tópico estiver no local errado.

Eu tenho 32 anos e estou querendo depois de velho tentar vestibular para Engenharia Civil, O fato é que estou com algumas apostilas de cursinho fazendo exercícios e esbarrei logo de cara na questão abaixo:

O fato é que a anos eu não vejo matemática então não sei nem por onde começar..

Eu tenho o resultado porém não consigo chegar nele, até imagino que seja bem simples mas minha cabeça não consegue puxar pela memória o que aprendi a anos atrás.
Anexos
Equação.JPG
Equação.JPG (5.77 KiB) Exibido 1704 vezes
brunnomaia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 06, 2011 10:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida na Resolução de uma Função

Mensagempor LuizAquino » Dom Mar 06, 2011 11:40

Você quer calcular \frac{1}{m}.

Portanto, você quer o valor de \frac{1}{-2 + \sqrt{\frac{a^2}{b^2} + \frac{b^2}{a^2}  + 2}} .

Primeiro, vamos simplificar um pouco essa raiz.
\frac{1}{-2 + \sqrt{\frac{a^2}{b^2} + \frac{b^2}{a^2}  + 2}} = \frac{1}{-2 + \sqrt{\frac{a^4+b^4+2a^2b^2}{a^2b^2}}}

Usando o produto notável (x+y)^2=x^2+2xy+y^2, nós temos que:

= \frac{1}{-2 + \sqrt{\frac{(a^2+b^2)^2}{(ab)^2} } }

Como a e b são números positivos, podemos efetuar a simplificação entre a raiz quadrada e a potência 2.

= \frac{1}{-2 + \frac{a^2+b^2}{ab}}

= \frac{1}{\frac{-2ab + a^2 +b^2}{ab}}

Usando o produto notável (x-y)^2=x^2-2xy+y^2, temos que:

= \frac{1}{\frac{(a-b)^2}{ab}}

= \frac{ab}{(a-b)^2}

Agora, basta substituir os valores para a e b:
= \frac{0,998\cdot 1}{(0,998 - 1)^2} = 249.500

Sugestão
Acredito que o tópico a seguir deva lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida na Resolução de uma Função

Mensagempor brunnomaia » Dom Mar 06, 2011 11:53

Muito Obrigado!

Eu estava tentando simplificar desde o começo substituindo o b por 1 , não lembrava dos produtos notáveis!
brunnomaia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 06, 2011 10:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.