• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação que está me tirando os cabelos rs

Equação que está me tirando os cabelos rs

Mensagempor matmat2 » Dom Mai 30, 2010 21:25

raiz cubica (2x-1) - raiz cubica (x-1) = 1

(2x-1)^1/3 - (x-1)^1/3 = 1

oriunda de ex. de fisica

não consigo desenvolver, as respostas caso ajude são 1 e 2(14+3*raizquadrada 21)

muito obrigado a quem conseguir desenvolver
matmat2
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 30, 2010 21:20
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: Equação que está me tirando os cabelos rs

Mensagempor Mathmatematica » Sáb Jun 05, 2010 05:35

Vamos tentar desenvolver... (Primeiramente, olá. :$ )

\sqrt[3]{2x-1}-\sqrt[3]{x-1}=1

Essa é uma equação irracional. Vamos então impor as condições de existência. Como 1>0 então devemos ter que \sqrt[3]{2x-1}>\sqrt[3]{x-1} ou devemos ter que \sqrt[3]{2x-1}<\sqrt[3]{x-1} (pois podemos ter resultados negativos: raiz de índice ímpar). Para o 1º caso temos que 2x-1>x-1\Longrightarrow x>0. Mas isso só ocorre se 2x-1>0\Longrightarrow x>\dfrac{1}{2} e x-1>0\Longrightarrow x>1. Fazendo a intercessão (vamos interceder para que eu nunca mais cometa esse erro), digo interseção das inequações teremos que x>1 satisfaz o primeiro caso.

Para o 2º caso temos a inversão das inequações, certo? Sendo assim teremos x<0 e x<\dfrac{1}{2} e x<1 e a interseção dessas condições nos dá x<0. Se k é solução dessa inequação então k\in\mathbb R-[0,1]. Logo a(s) solução(ões) dessa inequação não está entre zero e 1, inclusive.
Vamos aos cálculos:

\sqrt[3]{2x-1}-\sqrt[3]{x-1}=1

(\sqrt[3]{2x-1}-\sqrt[3]{x-1})^3=1^3

(2x-1)-3\sqrt[3]{(2x-1)^2(x-1)}+3\sqrt[3]{(2x-1)(x-1)^2}-(x-1)=1

2x-x-1+1-3\sqrt[3]{(2x-1)(x-1)}(\sqrt[3]{2x-1}-\sqrt[3]{x-1})=1

x-1=3\sqrt[3]{(2x-1)(x-1)}(\sqrt[3]{2x-1}-\sqrt[3]{x-1})

Da primeira equação (que por sinal é semelhante às demais) temos que \sqrt[3]{2x-1}-\sqrt[3]{x-1}=1. Então:

x-1=3\sqrt[3]{(2x-1)(x-1)}

(x-1)^3=27(2x-1)(x-1)\Longleftrightarrow (x-1)^3-27(2x-1)(x-1)=0

(x-1)[(x-1)^2-27(2x-1)]\Longrightarrow x-1=0 \ $ou$ \ (x-1)^2-27(2x-1)=0

Então: x=1 \ $ou$ \ x^2-56x+28=0

\Delta=3136-112=3024=2^4.3^2.21

x=\dfrac{56\pm 12\sqrt{21}}{2}\Longrightarrow x=28+6\sqrt{21} \ $ou$ \ x=28-6\sqrt{21}

Perceba porém que 0<28-6\sqrt{21}<1. Então esse resultado não convém, pois não obedece às condições do problema. Sendo assim, os valores de x que satisfazem essa equação são 1 \ $e$ \ 28+6\sqrt{2}.

Observações:
_Qualquer erro, por favor, AVISEM!!! ;)
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?