por ROSANA DANTAS » Qui Mai 13, 2010 12:06
1- Uma empresa, após um processo de racionalização de produção, ficou com disponibilidade de 3 recursos produtivos, R1, R2 e R3. Um estudo sobre o uso desses recursos indicou a possibilidade de se fabricar 2 produtos P1 e P2. Levantando os custos e consultando o departamento de vendas sobre o preço de colocação no mercado, verificou-se que P1 daria um lucro de R$ 120,00 por unidade e P2, R$ 150,00 por unidade. O departamento de produção forneceu a seguinte tabela de uso de recursos.
Produto Recursos R1 por unidade Recursos R2 por unidade Recursos R3 por unidade
P1 2 3 5
P2 4 2 3
Diponibilidade 100 90 120
de recurso
por mês
Que produção mensal de P 1 e P2 traz o maior lucro para a empresa? Construa o modelo do sistema.
2- Resolver graficamente o modelo de programação linear:
Maximizar Z = 3x1 + 5x2
Sujeito a :
2x1 + 2x2 < (ou igual) 6
x1 + 2x2 < (ou igual) 8
x1 + 2x2 < (ou igual) 9
x1 > 0, x2 > (ou igual) 0
-
ROSANA DANTAS
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mai 12, 2010 17:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ADMINISTRAÇÃO
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [PESQUISA OPERACIONAL] Modelagem de Problema de Logística
por mgomury » Seg Abr 27, 2015 23:56
- 0 Respostas
- 4271 Exibições
- Última mensagem por mgomury

Seg Abr 27, 2015 23:56
Funções
-
- [Pesquisa Operacional] Modelagem de Problema Método Simplex
por adilsonjcruz » Seg Jun 02, 2014 14:18
- 0 Respostas
- 2262 Exibições
- Última mensagem por adilsonjcruz

Seg Jun 02, 2014 14:18
Funções
-
- Pesquisa Operacional
por renata miranda » Sex Set 07, 2012 16:54
- 1 Respostas
- 2456 Exibições
- Última mensagem por Neperiano

Ter Set 18, 2012 13:57
Funções
-
- Pesquisa Operacional - Programação linear e método somplex
por Diofanto » Qui Out 25, 2012 14:54
- 2 Respostas
- 3126 Exibições
- Última mensagem por Neperiano

Ter Nov 06, 2012 13:27
Funções
-
- Tabela Regularidade Operacional
por Lana Brasil » Dom Abr 17, 2016 20:06
- 5 Respostas
- 6674 Exibições
- Última mensagem por adauto martins

Seg Mai 02, 2016 14:45
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.