• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função Simples] Comparando f(x) e g(x)

[Função Simples] Comparando f(x) e g(x)

Mensagempor Rike Morais » Sex Jul 08, 2016 16:41

Boa tarde galera!

Estou com uma dúvida simples. Tenho as seguintes funções:

f(x)= \frac{x^2-x}{x-1}

g(x)= x

Eu preciso descobrir se f(x) = g(x), então comecei:

f(x)=\frac{x^2-x}{x-1}[/b] = [b]\frac{x^2-x^1}{x-1} = \frac{x}{x-1}

E é aqui que me deparo com o problema: Eu não posso eliminar os x. A conta acaba aí?

Muito Obrigado pela ajuda!
Henrique Morais
Consultor de TI
Graduando em Estatística (UFS)
Rike Morais
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jan 14, 2012 16:57
Localização: Aracaju - Se
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Daniel Bosi » Sex Jul 08, 2016 17:15

Olá, Rike. Tente começar igualando as duas funções:

\frac{x^2 - x}{x-1}=x

A partir disso basta multiplicar ambos os lados por (x-1):

x^2 - x = x(x-1)

Aplicando a distributiva no lado direito da igualdade vemos que, de fato, as funções são iguais:

x^2 - x = x^2 - x
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Rike Morais » Sex Jul 08, 2016 17:22

Muito bom! Obrigado Daniel!

:-O :y:
Henrique Morais
Consultor de TI
Graduando em Estatística (UFS)
Rike Morais
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jan 14, 2012 16:57
Localização: Aracaju - Se
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Daniel Bosi » Sex Jul 08, 2016 17:44

Só perceba um detalhe, Rike:

A função f(x) não está definida para x=1 (pois caso x seja 1, o denominador dá zero e teremos uma divisão por zero). Portanto, não podemos dizer que as funções são iguais (pois não existe uma correspondência para o ponto x=1 na imagem), embora seja possível mostrar algebricamente que as expressões são equivalentes para valores de x diferentes de 1.
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: