• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função Simples] Comparando f(x) e g(x)

[Função Simples] Comparando f(x) e g(x)

Mensagempor Rike Morais » Sex Jul 08, 2016 16:41

Boa tarde galera!

Estou com uma dúvida simples. Tenho as seguintes funções:

f(x)= \frac{x^2-x}{x-1}

g(x)= x

Eu preciso descobrir se f(x) = g(x), então comecei:

f(x)=\frac{x^2-x}{x-1}[/b] = [b]\frac{x^2-x^1}{x-1} = \frac{x}{x-1}

E é aqui que me deparo com o problema: Eu não posso eliminar os x. A conta acaba aí?

Muito Obrigado pela ajuda!
Henrique Morais
Consultor de TI
Graduando em Estatística (UFS)
Rike Morais
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jan 14, 2012 16:57
Localização: Aracaju - Se
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Daniel Bosi » Sex Jul 08, 2016 17:15

Olá, Rike. Tente começar igualando as duas funções:

\frac{x^2 - x}{x-1}=x

A partir disso basta multiplicar ambos os lados por (x-1):

x^2 - x = x(x-1)

Aplicando a distributiva no lado direito da igualdade vemos que, de fato, as funções são iguais:

x^2 - x = x^2 - x
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Rike Morais » Sex Jul 08, 2016 17:22

Muito bom! Obrigado Daniel!

:-O :y:
Henrique Morais
Consultor de TI
Graduando em Estatística (UFS)
Rike Morais
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jan 14, 2012 16:57
Localização: Aracaju - Se
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Daniel Bosi » Sex Jul 08, 2016 17:44

Só perceba um detalhe, Rike:

A função f(x) não está definida para x=1 (pois caso x seja 1, o denominador dá zero e teremos uma divisão por zero). Portanto, não podemos dizer que as funções são iguais (pois não existe uma correspondência para o ponto x=1 na imagem), embora seja possível mostrar algebricamente que as expressões são equivalentes para valores de x diferentes de 1.
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}