A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por geriane » Seg Abr 05, 2010 10:49
A soma das idades dos amigos Pedro, José e Ivo é igual a 60. Sabe-se que a soma da idade de José com diferença entre as idades de Pedro e Ivo (nesta ordem) é igual a 30 e que o dobro da idade de Pedro mais a idade de José, menos a idade de Ivo é igual a 55. Assim, a idade de José é:
a)10 b)15 c)20 d)25 e)30
Não consegui desenvolve-la
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
por Lucio Carvalho » Seg Abr 05, 2010 11:50
Olá geriane,
Primeiramente vamos considerar as seguintes incógnitas:
x -> idade do Pedro
y -> idade do José
z -> idade do Ivo
Então, de acordo com o problema, escrevemos o seguinte sistema de 3 equações de 3 incógnitas:
x + y + z = 60
y + (x - z) = 30
2x + y - z = 55
----------------------
Podemos escrever da seguinte forma:
x + y + z = 60
x + y - z = 30
2x + y - z = 55
Podes agora usar o algoritmo de Gauss para resolver o sistema.
Segundo os meus cálculos a idade do José é 20. A alínea correcta é c)
Avisa se tiveres dúvidas na resolução do sistema. Estamos aqui para ajudar!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por mozarth11 » Seg Abr 05, 2010 12:00
A soma das idades dos amigos Pedro, José e Ivo é igual a 60. Sabe-se que a soma da idade de José com diferença entre as idades de Pedro e Ivo (nesta ordem) é igual a 30 e que o dobro da idade de Pedro mais a idade de José, menos a idade de Ivo é igual a 55. Assim, a idade de José é:
a)10 b)15 c)20 d)25 e)30
p+j+i = 60
j + (p-i) = 30
2p+j - i = 55
j+p-i=30
j+p = 30+i
30+i+i = 60
30+2i = 60
2i = 60-30
2i = 30
i = 30/2
i = 15
P+j+15 = 60
P+j = 60-15
P+j = 45
2p+j-i=55
p+p+j-i=55
p+45-15=55
p = 55-45+15
p = 25
P+J = 45
25+J = 45
J = 45-25
J = 20
S = {p,j,i}
S = {25,20,15}
-
mozarth11
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Abr 05, 2010 11:51
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: matematica
- Andamento: formado
por geriane » Seg Abr 05, 2010 23:57
Mto obrigada!!!!! A respota certa é a c) 20.
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
Voltar para Desafios Fáceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Idade
por Ananda » Qua Fev 27, 2008 16:18
- 3 Respostas
- 3470 Exibições
- Última mensagem por admin

Qua Fev 27, 2008 18:21
Problemas do Cotidiano
-
- Idade do escritor
por Cleyson007 » Qua Jun 10, 2009 09:47
- 6 Respostas
- 3784 Exibições
- Última mensagem por ginrj

Qua Jun 10, 2009 18:04
Álgebra Elementar
-
- qual a idade?
por Claulopes » Sex Set 24, 2010 01:41
- 2 Respostas
- 3082 Exibições
- Última mensagem por Claulopes

Sex Set 24, 2010 22:56
Tópicos sem Interação (leia as regras)
-
- Problema de idade
por Alessandra Cezario » Qua Abr 20, 2011 12:57
- 4 Respostas
- 5828 Exibições
- Última mensagem por LuizAquino

Dom Abr 24, 2011 20:12
Problemas do Cotidiano
-
- Problemas de idade II
por Alessandra Cezario » Seg Mai 02, 2011 20:30
- 4 Respostas
- 5687 Exibições
- Última mensagem por Alessandra Cezario

Ter Mai 03, 2011 16:11
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.