• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[potência] Questao UFSC

[potência] Questao UFSC

Mensagempor yuripa » Seg Ago 17, 2015 01:46

Ola, estou tentando resolver essa questao da ufsc que basicamente envolve apenas conceitos de potencia. Eu consigo anular o B e o C, mas nunca consigo cortar o A completamente, e como a resposta se trata de um numero puro, devo estar fazendo algo muito errado.

Resposta = 90.

OBS: Nao da pra ver direito na imagem, mas o C mais da esquerda é elevado a 8/3.
Anexos
1209381410.jpg
UFSC
yuripa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Ago 17, 2015 01:40
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [potência] Questao UFSC

Mensagempor nakagumahissao » Seg Ago 17, 2015 11:43

\frac{120}{8}\left[2^8\cdot 4^{-3} \cdot \left(a^{4} \cdot b^{-2} \cdot  c^{\frac{8}{3}} \right)^{3} \cdot 3^2 \cdot \left(\frac{b^3 \cdot a^{-4}}{a^{1} \cdot b^{0} \cdot c^{4} \right)^{2}} \right]^{\frac{1}{2}}

Vamos resolver primeiramente o que se encontra dentro dos parênteses para que possamos eliminá-los:

\frac{120}{8}\left[2^8\cdot 4^{-3} \cdot a^{12} \cdot b^{-6} \cdot  c^{8} \cdot 3^2 \cdot \frac{b^6 \cdot a^{-8}}{a^{2} \cdot b^{0} \cdot c^{8}} \right]^{\frac{1}{2}}

Agora vamos passar o 1/2 multiplicando por todas as pontências dentro do colchetes para que possamos eliminar os colchetes e sabendo-se que b^0 = 1 e 120/8 = 15, vamos já substituir na expressão:

15\left(2^4\cdot 4^{-\frac{3}{2}} \cdot a^{6} \cdot b^{-3} \cdot  c^{4} \cdot 3^{1} \cdot \frac{b^3 \cdot a^{-4}}{a^{1} \cdot 1 \cdot c^{4}} \right)

Na potenciação, quando se tem uma multiplicação para bases iguais, repete-se a base e somam-se os expoentes. Para a divisão onde as bases são iguais, repete-se a base e diminuem-se os expoentes. Assim:

15\left(2^4\cdot 2^{-2\frac{3}{2}} \cdot 3^{1} \cdot \frac{ c^{4} \cdot b^0 \cdot a^{2}}{a^{1} \cdot 1 \cdot c^{4}} \right)

15\left(2^4\cdot 2^{-3} \cdot 3 \cdot \frac{c^{4}a}{c^{4}} \right)

15\left(2^1 \cdot 3 \cdot c^{4 - 4}a} \right)

15\left(2 \cdot 3 \cdot c^{0}a} \right)

15\left(2 \cdot 3 \cdot 1 \cdot a} \right)

15\left(6a \right) = 90a

\blacksquare
Editado pela última vez por nakagumahissao em Ter Ago 18, 2015 03:13, em um total de 3 vezes.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [potência] Questao UFSC

Mensagempor yuripa » Seg Ago 17, 2015 14:16

Ola, primeiramente obrigado pela resposta.

Quando voce passou o 1/2 multiplicando, por que o a^2 que estava em baixo nao foi multiplicado tambem? Ele nao deveria ter virado a^1? O c^8 que estava do lado foi, e virou c^4, nao entendi por que o a nao foi.
yuripa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Ago 17, 2015 01:40
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [potência] Questao UFSC

Mensagempor nakagumahissao » Ter Ago 18, 2015 03:15

Bem observado! Você têm razão.

Fiz as correções necessárias. Acredito que a resposta do gabarito esteja faltando este "a".


Obrigado



Sandro
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59