• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar conjuntos

Determinar conjuntos

Mensagempor Klash1 » Qua Abr 09, 2014 18:00

Dado U = {-4,-3,-2,-1,0,1,2,3,4}, sejam A = {x\epsilonU|x<0}, B = {x\epsilonU|-3<x<2} e C = {X\epsilonU|x\geq-1} Determine:

A) A \cap B \cap C
B) A \cup B \cup C
C) C \cup (B\cap A)
D)(B \cup A) \cap C


Eu não sei resolver esse exercício. Podem resolver apenas o primeiro e explicar a resolução? Só preciso que seja explicado uma e as outras conseguirei resolver (espero :-D)


Obrigado!


---

Está correto isso que fiz?

A: {-1}
B: {-4,-3,-2,-1,0,1,2,3,4}
C: {-2,-1,0,1,2,3,4}
D: {-1,0,1}
Klash1
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 09, 2014 17:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informática
Andamento: cursando

Re: Determinar conjuntos

Mensagempor Russman » Qua Abr 09, 2014 23:43

A sua estratégia está correta. Você tem que expressar os conjuntos A, B e C com os seus respectivos elementos explicitamente para visualizar melhor as intersecções e uniões.

Os elementos do conjunto A são todos aqueles do conjunto U que menores que 0. Ou seja, todos os elementos negativos de U. Assim, verificando, temos A = \left \{ -4,-3,-2,-1 \right \}.
Os elementos do conjunto B são todos aqueles do conjunto U que são menores que 2 e maiores que 3 . Assim, verificando, temos B = \left \{  -2,-1,0,1\right \}. Note aqui que a notação -3<x e x<2 significa que temos de selecionar todos os elementos de U que se incluem nesse intervalo mas EXCLUINDO o próprio -3 e 2. Do contrário seria -3 \leq x e x \geq 2. Entende porque? Veja a definição de intervalo aberto e fechado.
Os elementos do conjunto C, finalmente, são todos aqueles do conjunto U que são maiores OU IGUAL a -1 . Assim, verificando, temos C = \left \{-1,0,1,2,3,4 \right \}. Aqui, inclui-se o próprio -1.

A operação "intersecção" entre dois conjuntos gera um novo conjunto cujos elementos são a captura de todos os elementos comuns a eles. Por exemplo,

A\cap B = \left \{-2,-1\right\}

pois são os únicos elementos que pertencem a A e B simultaneamente .

Já a operação "união" entre dois conjuntos gera um novo conjunto cujos elementos são a junção(ou união, como o nome mesmo já diz) de todos os elementos desses conjuntos. Nota: se um elemento pertence ao dois conjuntos simultaneamente, isto é, se este elemento pertence a intersecção dos conjuntos, ele deve ser acrescentado a união dos mesmos uma única vez. Por exemplo,

A \cup B = \left\{-4,-3,-2,-1,0,1 \right\}

Os elementos -2 e -1 pertencem a intersecção de A e B (como calculamos no 1° exemplo) e apareceram uma única vez no conjunto união.

Tente prosseguir.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.