• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Média Aritmética] Razões, Proporções e Regra de Três

[Média Aritmética] Razões, Proporções e Regra de Três

Mensagempor Tatasacchi_123 » Ter Mar 26, 2013 16:24

Olá é minha primeira vez neste fórum... e procuro desesperadamente ajuda para minha evolução matemática (tenho grandes dificuldades).

Minha dúvida é neste problema:

*) A média aritmética das idades de um grupo de professores e inspetores é 40. Se a média das idades dos professores é 35 e a média das idades dos inspetores é 50, qual é a razão entre o número de professores e o número de inspetores?

Tentei interpretar o problema e conclui que:
Legenda:
nº de professores (P)
nº de inspetores (I)

soma das idades dos professores (xp)
soma das idades dos inspetores (xi)

Tentativa:
((xp+xi))/((P+I)) =40
(xp)/(P)=35 >> P= (xp)/(35)
(xi)/(I)=50 >> I= (xi)/(50)
P/I=?
( (xp)/(35) )/( (xi)/(50) )= (10xp)/(7xi)= ?


a resposta é 1/2, mas não consigo chegar nela...
Tentei substituir P e I na primeira fórmula... mas chego em: (xp=xi)=(8xp)/(7) + (4xi)/(5) e nunca em um resultado concreto.

att.
Tatasacchi_123
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Mar 26, 2013 16:01
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Química
Andamento: formado

Re: [Média Aritmética] Razões, Proporções e Regra de Três

Mensagempor young_jedi » Ter Mar 26, 2013 19:55

sua interpretação e equacionamento estão corretos, só faltou desenvolver mais as equações

de uma de suas equações podemos tirar que

x_p=35.P

e da outra

x_i=50.I

substituindo na primeira

\frac{35.P+50.I}{P+I}=40

então temos

35.P+50.I=40.(P+I)

35.P+50I=40.P+40.I

50.I-40.I=40.P-35.P

10.I=5.P

\frac{I}{P}=\frac{5}{10}

\frac{I}{P}=\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Média Aritmética] Razões, Proporções e Regra de Três

Mensagempor Tatasacchi_123 » Qua Mar 27, 2013 17:37

A...

Nossa... obrigada. Realmente faltaram algumas tentativas...
Tatasacchi_123
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Mar 26, 2013 16:01
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Química
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?