• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício da Puc-SP

Exercício da Puc-SP

Mensagempor Vivian_G » Sáb Jan 26, 2013 15:22

Dada a equação x + x‚ + ... + xn = k, na qual k N, chama-se solução inteira dessa equação a toda n-pla de números inteiros (?,?‚, ..., ?n), tal que ? + ?‚ + ... + ?n = k. Assim, por exemplo, as ternas (6, 10, 3) e (-2, 9, 12) são soluções inteiras da equação x + y + z = 19. Sabe-se que o número de soluções inteiras e positivas da equação x + x‚ + ... + xn = k é dado pela combinação (C) de k - 1 elementos, n - 1 a n - 1. Nessas condições, se a equação x + y + z = k tem 36 soluções inteiras e positivas, então uma solução dessa equação é:
a) (2, 1, 3)
b) (4, 2, 3)
c) (3, 6, 1)
d) (5, 3, 4)
e) (8, 7, 5)
Vivian_G
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jan 26, 2013 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercício da Puc-SP

Mensagempor young_jedi » Dom Jan 27, 2013 13:37

C_{n-1}^{k-1}=\frac{(k-1)!}{(n-1)!(k-1-n+1)!}

como nos temos tres termos então n=3 então

\frac{(k-1)!}{2!(k-1-2)!}=36

\frac{(k-1)(k-2)}{2}=36

k^2-3k+2=72

k^2-3k-70=0

resolvendo por baskara ou soma e produto

k=-7 ou k=10

como k deve ser positivo então k igual a 10

a alternativa que satisfaz é a c)

pois

3+6+1=10
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.