• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor anaccosta29 » Qui Nov 22, 2012 14:15

Dada a função f(x) =x^3/6 + 1/2x,em que x é maior ou igual a 1 e menor ou igual a 2:
a) determine o comprimento da curva;
b) calcule o volume de revolução desta curva em torno do eixo OX.

Na letra a usei a f'órmula pra calcular o comprimento da curva, mas não consegui resolver a integral. E não consegui resolver a b.
anaccosta29
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 22, 2012 14:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Qui Nov 22, 2012 18:30

Você pode usar LaTeX para redigir sua função? Não sei dizer se é f(x) = \frac{x^3}{6} + \frac{x}{2} ou f(x) = \frac{x^3}{6} + \frac{1}{2x}. Isto é uma diferença crucial para resolver o exercício.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}