• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) inequação logaritmica

(ESPCEX) inequação logaritmica

Mensagempor natanskt » Sex Out 29, 2010 10:42

o conjunto solução da inequação (\frac{1}{2})^{x-3} \leq \frac{1}{4} é:
a-)[5, \infty[
b-)[4, \infty[
C-)]\infty , 5]
D-){x e R / X \leq -5
E-){x e R / X \geq -5
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) inequação logaritmica

Mensagempor nakagumahissao » Seg Abr 30, 2012 21:36

{\left(\frac{1}{2} \right)} ^{x - 3} \leq \frac{1}{4}\Rightarrow(x - 3) log(\frac{1}{2}) \leq log(\frac{1}{4})\Rightarrow

\Rightarrow x-3  \leq \frac{log 1 - log 4}{log 1 - log 2} \Rightarrow x \leq 3 + \frac{log 1 - log 4}{log 1 - log 2} \Rightarrow

\Rightarrow x \leq \frac{3 log 1 - 3 log 2 + log 1 - 2 log 2}{log 1 - log 2} \Rightarrow x \leq \frac{4 log1 - 5log2}{log 1 - log 2} \Rightarrow

\Rightarrow x \leq \frac{-5log2}{-log 2} \Rightarrow x \geq 5

Pois log 1 = 0.

Portanto, a resposta é:

x \in \Re : x \geq 5

A resposta é a opção [a]
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.