• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites envolvendo fatoriais

Limites envolvendo fatoriais

Mensagempor victoreis1 » Ter Out 26, 2010 16:45

Boa tarde.. há um tempo venho fazendo cálculos de limites, seja racionalizando, seja cancelando fatores comuns.. mas tem uns que não consigo resolver por tais métodos, como este:

\lim_{x -> 4} \frac {x! - 6x}{x-4}

visto que não tem como cancelar os termos..

Se alguém souber como resolvê-lo, fico grato em receber uma resposta (:
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites envolvendo fatoriais

Mensagempor Neperiano » Ter Out 26, 2010 17:51

Ola

Não tenho certeza mas se voce susbituir o x! por, x.x-1.x-2.x-3 e cortar o x-2 com o x-4 vai ficar só x-2 embaixo e assim vai da para responder

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Limites envolvendo fatoriais

Mensagempor victoreis1 » Ter Out 26, 2010 18:30

como exatamente cortar \frac {x-2}{x-4} ?

não dá pra fazer cortando, tem de ter outra maneira
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites envolvendo fatoriais

Mensagempor Neperiano » Qua Out 27, 2010 12:22

Ola

x.x-1.x-2.x-3.-6x
------------------------
x-4

Note que voce pode cortar o x e o 2 com o x e 0 4, ficando

x.x-1.x-3. - 6x
-----------------------
2 x-4

Substituindo o 4 vai ficar 12 - 24 emcima e embaixo 2 - 0, -12/2 = -6

Claro que não tenho certeza se pode fazer isso, mas se puder fica assim

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}