• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:50

19-)há numeros reais para os quais o quadrado de seu logaritmo decimal é igual ao logaritmo decimal de seu quadrado.a soma dos numeros que satisfazem essa igualdade é:
a-)90
b-)99
c-)100
d-)101
e-)201
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:53

Vamos interpretar o enunciado:

O quadrado do seu logaritmo decimal é igual ao logaritmo decimal de seu quadrado.

(\log_{10} x)^2 = \log_{10} (x^2) = 2 \log_{10} x

Fazendo \log_{10} x = k, temos:

(\log_{10} x)^2 = 2 (\log_{10} x) \rightarrow k^2 = 2k \rightarrow k^2 -2k = 0 \rightarrow k(k-2) = 0

De onde tiramos que k = 0 ou k = 2. Como tínhamos feito \log_{10} x = k, agora isso resulta em:

\log_{10} x = 0 ou \log_{10} x = 2

10^0 = x ou 10^2 = x

x = 1 ou x=100

Somando:

100 +1 = 101

Alternativa D.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor DanielRJ » Seg Out 11, 2010 18:25

Putz questãozinha boa eu não saberia interpretar isso ai..
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}