• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AMAN) Equação logaritmica

(AMAN) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:20

(AMAN)se log_3{4}=a e log_4{5}=b,então o valor de log_3{5}em função de a e b é:
a-)1/a+b
b-)b/a
c-)1/a.b
d-)a/b
e-)a . b
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AMAN) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:03

Queremos \log_3 5 sabendo que \log_3 4 = a e \log_4 5 = b. Pela propriedade da mudança de base temos que:

\log_3 5 = \frac{\log_4 5}{\log_4 3} = \frac{b}{\log_4 3}

Falta encontrar \log_4 3. Vamos aplicar a mesma propriedade em \log_3 4:

\log_3 4 = \frac{\log_4 4}{\log_4 3} = \frac{1}{\log_4 3} = a \rightarrow \log_4 3 = \frac{1}{a}

Note que eu posso fazer isso pois \log_3 4 = a > 0 (verifique). Agora, basta substituir:

\log_3 5 = \frac{b}{\log_4 3} = \frac{b}{\frac{1}{a}} = a \cdot b

Alternativa E.

Natanskt, veja o meu conselho no outro tópico.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (AMAN) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 17:13

ta bom
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.