• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AFA) Equação logaritmica

(AFA) Equação logaritmica

Mensagempor natanskt » Sáb Out 09, 2010 15:00

29-)(AFA) sendo log_3{(\sqrt{7}}-2)}=k o valor de log_3{(\sqrt{7}}+2)}=k é:
a-)1-k
b-)1+k
c-)2-k
d-)2+k
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) Equação logaritmica

Mensagempor Douglasm » Sáb Out 09, 2010 17:29

Primeiramente, há um erro no enunciado: Queremos o valor de \log_3 (\sqrt{7} + 2), que não é igual a k. Chamarei esse valor de x. Assim temos:

\log_3 (\sqrt{7} - 2) = k

\log_3 (\sqrt{7} + 2) = x

Multiplicando um pelo outro temos:

\log_3 (7 - 4) = k + x \;\therefore

1 - k = x

Ficamos com a letra a.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.