por natanskt » Sex Out 08, 2010 12:27
O valor de
![-log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right] -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]](/latexrender/pictures/61c2f277bbcd3808f546e74a4cd4872a.png)
é?
a-)1
b-)2
c-)3
d-)4
nem conseguir começar a conta
-
natanskt
- Colaborador Voluntário

-
- Mensagens: 176
- Registrado em: Qua Out 06, 2010 14:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por DanielRJ » Sex Out 08, 2010 14:25
natanskt escreveu:O valor de
![-log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right] -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]](/latexrender/pictures/61c2f277bbcd3808f546e74a4cd4872a.png)
é?
a-)1
b-)2
c-)3
d-)4
nem conseguir começar a conta
![-log_{2}[log_{2}2^\frac{1}{8}] -log_{2}[log_{2}2^\frac{1}{8}]](/latexrender/pictures/39755266c310f4f95e7b7b9b478f4a82.png)
cortas o 2 da base e o 2 logaritmano.
![-log_{2}[\frac{1}{8}] -log_{2}[\frac{1}{8}]](/latexrender/pictures/711b9dd000d1a570719aca1b31e5304d.png)
![-log_{2}[\frac{1}{2^3}] -log_{2}[\frac{1}{2^3}]](/latexrender/pictures/b112a02bae6f1e248ee980861cf8caee.png)


Eu fiquei meio em duvida vamo esperar algum amigo aparecer ai..
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Sex Out 08, 2010 14:30
natanskt escreveu:O valor de
![-log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right] -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]](/latexrender/pictures/61c2f277bbcd3808f546e74a4cd4872a.png)
é?
a-)1
b-)2
c-)3
d-)4
nem conseguir começar a conta
Boa tarde, Natan.
Vamos resolvendo por partes:
Sabemos que

Ou seja,
![\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]=\left[log_2 2^{\frac{1}{8}} \right]=\frac{1}{8}*log_2 2 =\frac{1}{8}*1=\frac{1}{8} \left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]=\left[log_2 2^{\frac{1}{8}} \right]=\frac{1}{8}*log_2 2 =\frac{1}{8}*1=\frac{1}{8}](/latexrender/pictures/2a6b0407843168668ea22ef38fb50a49.png)
Voltando na expressão geral:
![-log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]=-log_2\left[\frac{1}{8} \right]=-log_2\left[2^{-3} \right]=-(-3)*log_2 2 =3*1=3 -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]=-log_2\left[\frac{1}{8} \right]=-log_2\left[2^{-3} \right]=-(-3)*log_2 2 =3*1=3](/latexrender/pictures/d8a33381f99ad26c86d4bd1537c9d1e3.png)
Basicamente foi usado as propriedades logarítmicas e algébricas.
Qualquer dúvida em alguma passagem, informe!
Bom estudo.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação logaritmica
por DanielRJ » Qui Out 07, 2010 17:20
- 4 Respostas
- 2473 Exibições
- Última mensagem por DanielRJ

Sáb Out 09, 2010 15:28
Logaritmos
-
- (AFA) equação logaritmica
por natanskt » Sex Out 08, 2010 12:30
- 1 Respostas
- 1463 Exibições
- Última mensagem por DanielRJ

Sex Out 08, 2010 14:13
Funções
-
- (AFA) Equação logaritmica
por natanskt » Sáb Out 09, 2010 13:31
- 1 Respostas
- 1677 Exibições
- Última mensagem por DanielRJ

Sáb Out 09, 2010 13:42
Logaritmos
-
- (AFA) Equação logaritmica
por natanskt » Sáb Out 09, 2010 14:51
- 2 Respostas
- 1828 Exibições
- Última mensagem por natanskt

Seg Out 11, 2010 15:58
Logaritmos
-
- (AFA) Equação logaritmica
por natanskt » Sáb Out 09, 2010 15:00
- 1 Respostas
- 1641 Exibições
- Última mensagem por Douglasm

Sáb Out 09, 2010 17:29
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.