• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio Octogono

Exercicio Octogono

Mensagempor atpe » Qui Set 16, 2010 20:13

Quem me ajuda com este?

A área de 1 octógono regular é de 324m^2. Determine a área de 1 outro octogono regular cujo perimetro é a nona parte do octógono anterior.

O resultado nas soluçoes dá 4m^2.

A unica formula que vem no meu livro é Area=2.Perimetro.apotema. Desta forma não estou conseguindo. Ja pesquisei e apenas aparecem formulas mais avançadas.


Obrigada
atpe
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 16, 2010 20:08
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: naotenho
Andamento: cursando

Re: Exercicio Octogono

Mensagempor MarceloFantini » Sex Set 17, 2010 00:21

O perímetro e o raio da circunferência inscrita são diretamente proporcionais. Portanto, se o lado do menor é k, o perímetro é 8k, e o perímetro do maior é 72k. Portanto, se o perímetro aumentou nove vezes, o raio inscrito também aumentou nove vezes, de modo que R' = 9R. Portanto:

A_2 = 2P_2A_p_2 = 2 \cdot 72k \cdot 9R = 324
A_1 = 2P_1A_p_1 = 2 \cdot 8k \cdot R = X

Dividindo:

\frac{324}{X} = \frac{2 \cdot 72k \cdot 9R}{2 \cdot 8k \cdot R} \rightarrow \frac{324}{X} = 81 \rightarrow X = \frac{324}{81} = 4
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.