• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Josi » Qui Set 09, 2010 18:03

Gostaria de saber como se resolve a integral \int\frac{1}{x}sen x dx.
Tentei fazer com integração por partes, fazendo u=1/x e dv=sen x e também o contrário, mas acabei voltando na mesma integral.
Se alguém souber, por favor me ajude!!!
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Qui Set 09, 2010 19:10

Confesso que não consegui, Josi. Onde você conseguiu esta integral? Tentei o Wolfram Alpha e a resposta que ele me deu não ajudou em nada. Veja:

http://www.wolframalpha.com/input/?i=in ... +senx/x+dx
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor Josi » Qui Set 09, 2010 20:23

Ela surgiu na resolução de um problema de equação diferencial. Eu pensei que a intregral poderia estar errada, mas a professora fez a correção e chegou nessa mesma integral, mas nem ela soube a resposta. Usou a desculpa que estava no fim da aula e mandou a gente pesquisar e descobrir a resposta. Eu utilizei o maple, e ele deu a reposta sen x . ln x. Mas também não ajudou em nada.
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Qui Set 09, 2010 20:38

Acho que ela fez errado mesmo, pois não consigo encontrar solução e a solução do wolfram é algo que não dá pra ser feito no braço, imagino (ou levaria tempo demais).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: