• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GEOMETRIA

GEOMETRIA

Mensagempor JOHNY » Qui Set 02, 2010 18:23

CONSIDERE UM QUADRADO ABCD E DOIS TRIANGULOS EQUILATEROS ABP e BCQ, RESPECTIVAMENTE, INTERNO E EXTERNO AO QUADRADO. A SOMA DAS MEDIDAS DOS ANGULOS ADP, BQP E DPQ É???
JOHNY
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 02, 2010 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: GEOMETRIA

Mensagempor alexandre32100 » Sex Set 03, 2010 16:01

A ilustração do enunciado:

geometria.png
(clica pra ampliar)

\alpha = \angle ADP, \beta = \angle BQP e \gamma = \angle DPQ.

Na figura, é fácil perceber que o ponto P pertence à reta \overline{DQ}, ou seja \gamma=180^{\circ}, e daí fica fácil definir o valor de \alpha + \beta usando a soma dos ângulos internos do quadrilátero ABQD (que é 360^{\circ}) , uma vez que o ângulo \hat{DAB}=90^{\circ} \hat{ABQ}=90^{\circ}+60^{\circ} (afinal, ele é resultante da soma de um vértice do quadrado e do triângulo equilátero).
Mas e se são tivessemos a certeza de que P está sobre \overline{DQ}? Bastaria apenas usar a soma dos ângulos internos do pentágono ABQPD e deixar \alpha, \beta e \gamma como incógnitas, afim de achar a soma dos três ângulos.
alexandre32100
 


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}