• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PA da FGV

PA da FGV

Mensagempor Livia Primo » Seg Ago 30, 2010 15:15

Em uma progressão aritmética, de razão igual a -3 e primeiro termo igual a 90, o menos valor de n para que a soma dos n primeiros termos seja negativa é:
a) 60 b) 61 c)62 d)63 e)64
Livia Primo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Fev 02, 2010 18:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: formado

Re: PA da FGV

Mensagempor Douglasm » Seg Ago 30, 2010 19:08

Sabemos que a soma dos termos de uma progressão aritmética se dá por:

S_n = \frac{n(a_1 + a_n)}{2}

Sabemos, também, que o enésimo termo é:

a_n = a_1 + (n-1).r = 90 - 3(n-1)

Queremos que a soma seja menor que zero (notando que n é maior que zero) logo:

\frac{n(90 + 90 - 3(n-1)}{2}\; < \; 0 \;\therefore

180 - 3(n-1) \;<\; 0 \;\therefore

60\; <\; n-1 \;\therefore

n \;>\; 61

Sendo assim, o menor n para o qual a soma é negativa é 62, alternativa c.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}