• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar o [tex]\delta[/tex].

Achar o [tex]\delta[/tex].

Mensagempor filipeferminiano » Qui Ago 26, 2010 16:42

Boa tarde, estou iniciando meu estudo sobre limites e ainda não entendi como se acha o valor mínimo de \delta.
Por exemplo:
\lim_{x\to7} \left(8)/x-3=2\right

Eu não entendi muito bem a lógica do meu livro, quando ele diz que:

|x-7| < 1 e isso seria equivalente a -1 <|x-7| < 1

Alguém saberia me explicar como é a lógica desse exercício?
filipeferminiano
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 26, 2010 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Marketing
Andamento: cursando

Re: Achar o [tex]\delta[/tex].

Mensagempor MarceloFantini » Qui Ago 26, 2010 17:42

É esse o limite: \lim_{x \to 7} \frac{8}{x-3} = 2? Se sim, é fácil, x=7 pertence ao domínio e o limite existe: \lim_{x \to 7} \frac{8}{x-3} = \lim_{x \to 7} \frac{8}{7-3} = \lim_{x \to 7} \frac{8}{4} = 2.

Com relação ao módulo, não é difícil. Lembre-se que módulo é a distância até a origem. Então, por exemplo, se \left| k \right| = 5. então o número k ou é 5 ou é -5. Se for uma desigualdade, isso quer dizer um conjunto de números que satisfaz a condição. Exemplo: \left| \phi \right| < 3 quer dizer todos os números cuja distância é menor que 3, sejam positivos ou negativos (distância são sempre números positivos pois não existe distância negativa. Assim, \left| \phi \right| < 3 \Rightarrow -3 < \phi < 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Achar o [tex]\delta[/tex].

Mensagempor filipeferminiano » Sex Ago 27, 2010 00:30

Muito obrigado, essa parte eu entendi. Mas, o exercício pede para provar que o limite dessa função é 2 quando x tende a 7, mostrando que para qualquer \epsilon>0 haja um \delta>0.
Então, pulando algumas partes da resolução ele chega em|x-7|<\delta, então, certamente |x-7|<1, eu gostaria de saber de onde veio esse 1,
filipeferminiano
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 26, 2010 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Marketing
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.