• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sinais

sinais

Mensagempor jose henrique » Qua Ago 25, 2010 22:28

-\frac{\frac{39}{-5}}{5}-\frac{164}{25}=-\frac{39}{-25}-\frac{164}{25}

a partir daí e que pintou a dúvida, pois como os números do denominados são iguais não precisariamos de igualá-los, entretanto os sinais são diferentes e aí como resolvo?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: sinais

Mensagempor Molina » Qua Ago 25, 2010 23:17

jose henrique escreveu:-\frac{\frac{39}{-5}}{5}-\frac{164}{25}=-\frac{39}{-25}-\frac{164}{25}

a partir daí e que pintou a dúvida, pois como os números do denominados são iguais não precisariamos de igualá-los, entretanto os sinais são diferentes e aí como resolvo?

Boa noite, José Henrique.

Uma coisa que talvez você não sabia e que vai resolver sua dúvida é que:

\frac{-a}{b}=\frac{a}{-b}=-\frac{a}{b}

Ou seja, independente de onde estiver o sinal a fração é a mesma.

Então, na sua primeira fração -\frac{39}{-25}=-\left(-\frac{39}{25}\right)=\frac{39}{25}

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}