• Anúncio Global
    Respostas
    Exibições
    Última mensagem

verificar questão de probabilidade

verificar questão de probabilidade

Mensagempor gutorocher » Qua Jul 21, 2010 21:59

Uma urna contém 6 bolas brancas e 4 bolas vermelhas iguais em tudo menos na cor. Retiramos uma bola, anotamos a cor, recolocamos a bola na urna e retiramos mais uma bola.

a.Qual a probabilidade do resultado ser uma bola vermelha seguida de uma branca ?

6 bolas brancas
4 vermelhas
totalizando = 10 bolas sendo na retirada das bolas tem reposição, conforme mostra no enunciado.

Bola Vermelha:

\frac{4}{10} =\frac{2}{5} = 0,4

Bola Branca:

\frac{6}{10} =\frac{3}{5} = 0,6

tendo resultado final = \frac{2}{5} * \frac {3}{5} = 0,24 => 24\%


tendo no exercício como resposta : no meu caso deu 24% poderia verificar se o cálculo que fiz está certo, pois não fechou ou é erro do exercício.

a. 10%
b. 12%
c. 18%
d. 36%
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: verificar questão de probabilidade

Mensagempor Tom » Qui Jul 22, 2010 02:01

Creio que você está correto!
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: verificar questão de probabilidade

Mensagempor gutorocher » Sex Jul 23, 2010 16:10

preciso que mais pessoas verifiquem está questão !

desde já agradeço a todos
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: verificar questão de probabilidade

Mensagempor MarceloFantini » Sáb Jul 24, 2010 01:43

Está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: verificar questão de probabilidade

Mensagempor gutorocher » Sáb Jul 24, 2010 02:12

obrigado pela ajuda
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: verificar questão de probabilidade

Mensagempor marcelorenato » Qui Ago 12, 2010 19:09

Corretíssimo!
marcelorenato
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 12, 2010 00:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia e Matemática
Andamento: formado

Re: verificar questão de probabilidade

Mensagempor alexandre32100 » Sex Ago 13, 2010 13:19

Perfeito.
\dfrac{6\cdot 4}{100}=0,24 ou 24\%
alexandre32100
 

Re: verificar questão de probabilidade

Mensagempor gutorocher » Sex Ago 13, 2010 15:51

obrigado pelo esclarecimento
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59