por Moreno1986 » Sex Ago 06, 2010 14:48
Dados os valores!
log2=0,30103
log3=0,47712
log5=0,69
0,97^x . 500 = 100
0,97^x = 0,2
x . log(97/100) = log(2/10)
x . (log97 - log100) = Log2 - (log2 + Log5)
x . (log97 - 2) = log2 - (log2 + log5)
Só consigo obter log 2 e 5 pra substituir depois, como trabalharei com o logaritmo 97 pra obter logaritmo 3?
-
Moreno1986
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Ter Abr 13, 2010 01:20
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: técnico em mecânica
- Andamento: formado
por Moreno1986 » Ter Ago 10, 2010 18:02
Para que 500 gramas de uma substância radioativa se desintegre a uma taxa de 3% ao ano, se reduzindo a 100gramas, serão necessários:
a)50,9 anos
b)54,2 anos
c)53,6 anos
d)43,6 anos
e)56,6 anos
Dados:
log2=0,30103
log3=0,47712
log5=0,69
Eu havia montado assim:
500 . 0,97^x = 100
Mas gostaria de saber se existe algum jeito de eu montar a equação em função dos 3% do enunciado pra poder usar as aproximações dadas.
-
Moreno1986
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Ter Abr 13, 2010 01:20
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: técnico em mecânica
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação exponencial???
por azheng » Sáb Nov 21, 2009 19:47
- 0 Respostas
- 1556 Exibições
- Última mensagem por azheng

Sáb Nov 21, 2009 19:47
Álgebra Elementar
-
- Equação Exponencial
por Adriana Baldussi » Seg Nov 23, 2009 14:41
- 3 Respostas
- 2713 Exibições
- Última mensagem por Molina

Seg Nov 23, 2009 17:07
Álgebra Elementar
-
- Equação Exponencial
por LeonardoSantos » Ter Fev 16, 2010 14:11
- 1 Respostas
- 2720 Exibições
- Última mensagem por Douglasm

Ter Fev 16, 2010 15:46
Funções
-
- Equação exponencial
por cristina » Sex Jun 04, 2010 20:19
- 1 Respostas
- 2169 Exibições
- Última mensagem por Mathmatematica

Sáb Jun 05, 2010 00:27
Sistemas de Equações
-
- Equação exponencial
por nan_henrique » Sáb Jul 10, 2010 13:00
- 1 Respostas
- 2119 Exibições
- Última mensagem por Douglasm

Sáb Jul 10, 2010 13:12
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.