• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cálculo de igualdade matricial

cálculo de igualdade matricial

Mensagempor engel » Sáb Ago 07, 2010 11:21

Oi, tenho uma questão da UFRGS que diz assim:

Na igualdade matricial [1 0 0 [1 [1
x 1 0 . 2 = 1
y x 1] 3] 1] o valor de x+y é:

a) -2
b) -1
c) 0
d) 1
e) 2


não está claro nessa visualização, mas ma matriz há um "triângulo de zeros", o que indica que o determinante dela será o produto da diagonal. Então, será 1.

Mas agora, não sei como continuar o cálculo e descobrir quanto vale x+y. Qual o procedimento que devo fazer em igualdades matriciais?

Obrigada!!!!
engel
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Dez 30, 2009 16:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: cálculo de igualdade matricial

Mensagempor Molina » Sáb Ago 07, 2010 13:50

engel escreveu:Oi, tenho uma questão da UFRGS que diz assim:

Na igualdade matricial [1 0 0 [1 [1
x 1 0 . 2 = 1
y x 1] 3] 1] o valor de x+y é:

a) -2
b) -1
c) 0
d) 1
e) 2


não está claro nessa visualização, mas ma matriz há um "triângulo de zeros", o que indica que o determinante dela será o produto da diagonal. Então, será 1.

Mas agora, não sei como continuar o cálculo e descobrir quanto vale x+y. Qual o procedimento que devo fazer em igualdades matriciais?

Obrigada!!!!

Bom dia.

Pelo o que puder ver, o que você quer calcular é:

\begin{pmatrix}
   1 & 0 & 0  \\ 
   x & 1 & 0  \\
   y & x & 1 
\end{pmatrix}
* \begin{pmatrix}
   1  \\ 
   2  \\
   3 
\end{pmatrix}=
\begin{pmatrix}
   1  \\ 
   1  \\
   1 
\end{pmatrix}

O que você precisa agora é calcular a multiplicação das duas primeiras matrizes. Não há necessidade de relacionar com determinante. Sendo assim...

\underbrace{
\begin{pmatrix}
   1 & 0 & 0  \\ 
   x & 1 & 0  \\
   y & x & 1 
\end{pmatrix}
* \begin{pmatrix}
   1  \\ 
   2  \\
   3 
\end{pmatrix}}=
\begin{pmatrix}
   1  \\ 
   1  \\
   1 
\end{pmatrix}

\begin{pmatrix}
   1  \\ 
   x+2  \\
   y+2x+3 
\end{pmatrix}=
\begin{pmatrix}
   1  \\ 
   1  \\
   1 
\end{pmatrix}

Agora é só igualar os valores:

1=1
x+2=1 \Rightarrow x=-1
y+2x+3=1 \Rightarrow y=0

Com isso concluímos que x+y=-1


Para próximas questões é indicado que você faça uso do LaTeX (através do Editor de Fórmulas) para melhor visualização da matriz.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: