por Jonatan » Ter Ago 03, 2010 14:44
Considere no Plano de Argand-Gauss os números complexos

,

,

,

, onde x e y são números reais quaisquer e

. Sobre o conjunto desses números complexos que atendem simultaneamente às condições:
I) Re(conjugado de

. conjugado de

)

Im(conjugado de

. conjugado de

)
II)

é correto afimar que:
a) representa uma região plana cuja área é menor que 6 unidades de área.
b) possui vários elementos que são números imaginários puros.
c) possui vários elementos que são números reais.
d) seu elemento z de menor módulo possível possui afixo que pertence à reta (r) 3x + 2y = 0
Gabarito: d)
Fazendo as condições I e II, cheguei no seguinte
Condição I)

Condição II)

Ou seja, cheguei em um círculo de centro C =(2,-3) e Raio = 2
Fazendo então a representação da interseção de

e do círculo, cheguei em um semi-círculo.
A minha dúvida agora é saber se calculei as condições I e II corretamente e analisar cada uma das alternativas. De cara eu achei que a letra B estivesse correta, já que o semi-círculo corresponde a um conjunto de vários números complexos...
Alguém pode resolver para mim? Desde já, agradeço.
Jonatan.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qui Ago 05, 2010 17:48
Como você fez as contas, imagino que tenha chegado nisso também:
(i)

(ii)

Isso mostra que a região é uma circunferência de raio 2 e sua área cujo centro é

. Como o raio é dois, a área é

, que é maior que 6 unidades de área. Se você fizer o gráfico, verá que ele tangencia o eixo y em um ponto e não encosta numa no eixo x, portanto não tem mais de um elemento imaginário puro e não tem nenhum real. A única alternativa que sobra é a D. O menor módulo possível é sempre zero, e a equação de reta que passa pela origem (para caracterizar módulo) e passa pelo centro da circunferência (módulo 0) é a dada na alternativa.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão de concurso...
por henrivoador » Seg Abr 19, 2010 20:37
- 7 Respostas
- 10972 Exibições
- Última mensagem por henrivoador

Seg Abr 26, 2010 13:07
Logaritmos
-
- Questão de concurso
por bia rosendo » Qua Fev 23, 2011 11:00
- 4 Respostas
- 5594 Exibições
- Última mensagem por Elcioschin

Qui Fev 24, 2011 11:08
Funções
-
- Questão de concurso
por bia rosendo » Seg Fev 28, 2011 22:54
- 2 Respostas
- 7610 Exibições
- Última mensagem por LuizAquino

Ter Mar 01, 2011 14:12
Problemas do Cotidiano
-
- QUESTAO CONCURSO..
por PathyNorato » Qui Jul 07, 2011 15:59
- 1 Respostas
- 3383 Exibições
- Última mensagem por FilipeCaceres

Qui Jul 07, 2011 21:05
Matemática Financeira
-
- questão de concurso
por luciana-lopfer » Qui Nov 24, 2011 14:34
- 5 Respostas
- 6145 Exibições
- Última mensagem por Tiago_Cariolano

Seg Jan 16, 2012 01:23
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.