• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites - erro em prova?

Limites - erro em prova?

Mensagempor LFurriel » Dom Jul 25, 2010 22:41

Olá, realizei uma prova da usp hoje, e após conferir o gabarito fiquei com uma dúvida.
http://www.fuvest.br/tran2011/provas/tran2011.exa.pdf ..
a questao 43, da pagina 8, me deixou intrigada.
Pois para mim, a resposta seria a alternativa d, contraria ao que diz no gabarito, que aponta a B como correta.
Gostaria que alguem me explicasse o porque. Obrigada!
LFurriel
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jul 23, 2010 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites - erro em prova?

Mensagempor Lucio Carvalho » Seg Jul 26, 2010 00:02

Olá LFurriel,
Apresento, em anexo, a ajuda.
Espero que compreendas!
Anexos
limite.png
limite.png (8.01 KiB) Exibido 3432 vezes
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Limites - erro em prova?

Mensagempor LFurriel » Seg Jul 26, 2010 00:07

Ola, só nao entendi pq o primeiro limite vale 0 e nao 2.
Pois nao seria 2 multiplicando um limite notavel de sen(x)/x qe vale 1?
por isso pra mim a resposta seria 5/2, pois seria esse 2 somado a 1/2 da segunda expressão.
Obrigada!
LFurriel
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jul 23, 2010 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites - erro em prova?

Mensagempor Lucio Carvalho » Seg Jul 26, 2010 00:18

Olá LFurrier,
Atenção! No primeiro limite não temos x a tender para zero.

No segundo, apesar de termos x a tender para mais infinito, no numerador está sen(1/x) e no denominador (1/x). É o mesmo que termos x a tender para zero e, no numerador existir sen x e no denominador x.

Espero que tenhas compreendido.
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Limites - erro em prova?

Mensagempor LFurriel » Seg Jul 26, 2010 00:31

Desculpa a insistência, mas ainda nao compreendi ..
pois para utilizei o seguinte raciocinio, usando 1/x =v, quando "x" tender para o infinito "v" vai tender para zero, e isso vale para os dois.
como o somente o segundo é utilizado do limite notavel?

Usando entao x = 1/v. Fazendo a substituição e fazendo a nova variável tender para zero vem:

limite x --> +inf de 2(senx)/x + (x/2)sen(1/x) =

limite x --> 0 de 2[sen(1/v)/(1/v)] + (1/2v)sen(v) =

limite x --> 0 de 2[sen(1/v)/(1/v)] + (1/2)(senv)/v =

limite x --> 0 de 2[1] + (1/2)(1) =

2+1/2 = 5/2

Chegando na letra "d".

Queria entender!

Obrigada pela paciencia!
LFurriel
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jul 23, 2010 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites - erro em prova?

Mensagempor MarceloFantini » Seg Jul 26, 2010 15:28

No limite fundamental da função seno, o denominador tem que sempre tender a zero, qualquer que seja ele. \lim_{x \to +\infty} \frac{1}{2} \cdot \frac{sen \frac{1}{x}}{\frac{1}{x}}, o denominador tende a zero, portanto caracteriza o limite fundamental. Vou fazer com a mudança de variável que você fez: \frac{1}{x} = v tal que x \to +\infty \Rightarrow v \to 0: \lim_{v \to 0} \frac{1}{2} \cdot \frac{sen v}{v} = \frac{1}{2}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: