• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Real..

Função Real..

Mensagempor Leone de Paula » Sáb Jul 17, 2010 15:39

Seja f uma função real tal que f(x+1)= x^2-5x+1 para todo x real. Então f(x-1) é igual a....?????
Leone de Paula
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 22:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Re: Função Real..

Mensagempor Tom » Sáb Jul 17, 2010 16:59

Através da manipulação algébrica:

x^2-5x+1=x^2+2x-7x+1=x^2+2x+1-7x=(x+1)^2-7x-7+7=
=(x+1)^2-7(x+1)+7.

Assim f(x+1)=(x+1)^2-7(x+1)+7, de onde se conclui que f(k)=k^2-7k+7 e, portanto:

f(x-1)=(x-1)^2-7(x-1)+7=x^2-2x+1-7x+7+7

Finalmente: f(x-1)=x^2-9x+15
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}