• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Vestibular-80) Área

(Vestibular-80) Área

Mensagempor flavio2010 » Qui Jul 15, 2010 12:54

Um poligono do plano Oxy tem área s.
A função f:R^2->R^2 tal que:
f(x,y)=(2x+y,x+2y) o tranforma num polígonode área:
a) s
b) 2s
c) 4s
d) s/2
e) 3s
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: (Vestibular-80) Área

Mensagempor Tom » Qui Jul 15, 2010 13:24

Por hora, penso que você poderia fazer um simples estudo.

Dado o triângulo cujos lados tem coordenada (0,0);(0,1);(1,0) cuja área é s=\dfrac{1}{2}

Com a função teríamos as coordenadas (0,0);(1,2);(2,1) , cuja área é s'=\dfrac{3}{2}

Assim, s'=3s



Letra E

Depois resolverei a questão com rigor, mas pode ficar tranquilo...a solução é letra E, mesmo.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: (Vestibular-80) Área

Mensagempor Tom » Sex Jul 16, 2010 01:38

Pronto, uma "solução oficial":

Sejam \vec{u},\vec{v} vetores de um espaço vetorial bidimensional representados no plano Oxy, tais que:

\vec{u}=x_u.\hat_{x}+  y_u.\hat_{y}

\vec{v}=x_v.\hat_{x}+  y_v.\hat_{y}

Sem perda de generalidade, podemos dividir um polígono em triângulos e assim o somatório da área dos triângulos resultará na área do polígono. Ora, se \vec{u} e \vec{v} são lados de um dos triângulos, então o módulo do produto vetorial \vec{u}\times\vec{v} é numericamte igual ao dobro da área do triângulo supracitado.

Calculando o módulo do vetor "produto vetorial", obtemos : 2S_{\triangle}=|(u_xv_y-u_yv_x)|

Com a função de transformação de coordenadas: f(x,y)=(2x+y,x+2y) a área seria:

2S'_{\triangle}=|(2u_x+u_y)(v_x+2v_y)-(u_x+2u_y)(2v_x+v_y)|=|3u_xv_y-3u_yv_x|=2.(3S_{\triangle})

Vemos então que a função triplica a área de qualquer triângulo e, portanto, triplicará a área do somatório, isto é, a área de qualquer polígono.

Concluímos, de fato, que a Letra E é a alternativa correta.

(c.q.d.)
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}