por marcellef » Seg Jul 12, 2010 21:30
Por favor, me ajudem com esta questão: "Dona Clara, de 52 anos, tem 2 filhos: um rapaz de 23 anos e uma moça de 26 anos.
a) Ha quanto tempo a soma das idades dos três era 65 anos?
b)Daqui ha quanto tempo a soma das idades dos três será igual a 128 anos?
Eu comecei assim:
C=26+M (C - idade de Clara, M- idade da moça)
C=29+R (R - idade do rapaz)
M-R=3
Então, encontrei a soma das idades deles hoje:
C+M+R= 101
Para o item A, fiz assim:
a)C-Y+R-Y+M-Y= 65
52-Y+23-Y+M-Y=65
Y=12
(considerando que, como trata-se de tempo passado, cada idade diminuiu o mesmo valor em anos (y). A resposta deu HÁ 12 anos, a mesma do gabarito).
b)Aqui eu tentei o mesmo raciocínio:
C+Y+R+Y+M+Y=128
MAS A RESPOSTA DEU Y=19/3, não bate com o gabarito (que é DAQUI HÁ 9 ANOS)
O que fiz errado?
-
marcellef
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Jul 12, 2010 21:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: DIREITO
- Andamento: formado
por MarceloFantini » Seg Jul 12, 2010 22:10
Você errou na conta.

, e não 19.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Linear
por Jean Cigari » Qua Jun 29, 2011 10:36
- 2 Respostas
- 1095 Exibições
- Última mensagem por LuizAquino

Qui Jun 30, 2011 13:25
Funções
-
- Função Linear
por Claudin » Qui Set 08, 2011 20:55
- 3 Respostas
- 1032 Exibições
- Última mensagem por MarceloFantini

Qui Set 08, 2011 21:27
Funções
-
- (UERJ) - Questão de função linear
por Levi23 » Qua Mar 11, 2009 22:28
- 1 Respostas
- 5232 Exibições
- Última mensagem por Levi23

Qua Mar 11, 2009 22:29
Funções
-
- Questão da Uerj função linear
por gustavoluiss » Seg Fev 07, 2011 22:24
- 12 Respostas
- 7419 Exibições
- Última mensagem por Santa Lucci

Ter Fev 08, 2011 01:24
Funções
-
- Equação diferencial não-linear de função composta
por Sally » Ter Fev 28, 2017 17:37
- 0 Respostas
- 2632 Exibições
- Última mensagem por Sally

Ter Fev 28, 2017 17:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.