• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial

Equação exponencial

Mensagempor nan_henrique » Sáb Jul 10, 2010 13:00

Resolver a equação:
7^2^x + 25^x = 2. 35^x
Arrumando a equação, fica com dois incognitas,
como faço?
nan_henrique
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Jun 24, 2010 18:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação exponencial

Mensagempor Douglasm » Sáb Jul 10, 2010 13:12

Comecemos arrumando a equação:

7^{2x} + 25^x = 2.35^x \;\therefore

7^{2x} + 5^{2x} = 2.(7.5)^x \;\therefore

\left(\frac{7}{5}\right)^x + \left(\frac{1}{\frac{7}{5}}\right)^x = 2

Para simplificar um pouco, podemos fazer uma substituição:

\left(\frac{7}{5}\right)^x = y

Continuando:

y + \frac{1}{y} = 2 \;\therefore

y^2 - 2y + 1 = 0 \;\therefore

y = 1 \;\mbox{(raiz dupla)}

Retornando à incógnita original:

\left(\frac{7}{5}\right)^x = 1 \;\therefore

x = 0

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.